module Data.List.Any.Membership.Propositional.Properties where
open import Algebra
open import Category.Monad
open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Empty
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
import Function.Injection as Inj
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Data.List as List
open import Data.List.Any as Any using (Any; here; there)
open import Data.List.Any.Properties
open import Data.List.Any.Membership.Propositional
import Data.List.Any.Membership.Properties as Membershipₚ
open import Data.Nat as Nat
open import Data.Nat.Properties
open import Data.Product as Prod
open import Data.Sum as Sum
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; _≗_)
import Relation.Binary.Properties.DecTotalOrder as DTOProperties
import Relation.Binary.Sigma.Pointwise as Σ
open import Relation.Unary using (_⟨×⟩_)
open import Relation.Nullary
open import Relation.Nullary.Negation
private
module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ)
open module ListMonad {ℓ} = RawMonad (List.monad {ℓ = ℓ})
module _ {a b} {A : Set a} {B : Set b} {f : A → B} where
∈-map⁺ : ∀ {x xs} → x ∈ xs → f x ∈ List.map f xs
∈-map⁺ = Membershipₚ.∈-map⁺ (P.setoid _) (P.setoid _) (P.cong f)
∈-map⁻ : ∀ {y xs} → y ∈ List.map f xs → ∃ λ x → x ∈ xs × y ≡ f x
∈-map⁻ = Membershipₚ.∈-map⁻ (P.setoid _) (P.setoid _)
map-∈↔ : ∀ {y xs} →
(∃ λ x → x ∈ xs × y ≡ f x) ↔ y ∈ List.map f xs
map-∈↔ {y} {xs} =
(∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Any↔ ⟩
Any (λ x → y ≡ f x) xs ↔⟨ map↔ ⟩
y ∈ List.map f xs ∎
where open Related.EquationalReasoning
concat-∈↔ : ∀ {a} {A : Set a} {x : A} {xss} →
(∃ λ xs → x ∈ xs × xs ∈ xss) ↔ x ∈ concat xss
concat-∈↔ {a} {x = x} {xss} =
(∃ λ xs → x ∈ xs × xs ∈ xss) ↔⟨ Σ.cong {a₁ = a} {b₁ = a} {b₂ = a} Inv.id $ ×⊎.*-comm _ _ ⟩
(∃ λ xs → xs ∈ xss × x ∈ xs) ↔⟨ Any↔ {a = a} {p = a} ⟩
Any (Any (_≡_ x)) xss ↔⟨ concat↔ {a = a} {p = a} ⟩
x ∈ concat xss ∎
where open Related.EquationalReasoning
filter-∈ : ∀ {a} {A : Set a} (p : A → Bool) (xs : List A) {x} →
x ∈ xs → p x ≡ true → x ∈ filter p xs
filter-∈ p [] () _
filter-∈ p (x ∷ xs) (here refl) px≡true rewrite px≡true = here refl
filter-∈ p (y ∷ xs) (there pxs) px≡true with p y
... | true = there (filter-∈ p xs pxs px≡true)
... | false = filter-∈ p xs pxs px≡true
>>=-∈↔ : ∀ {ℓ} {A B : Set ℓ} {xs} {f : A → List B} {y} →
(∃ λ x → x ∈ xs × y ∈ f x) ↔ y ∈ (xs >>= f)
>>=-∈↔ {ℓ} {xs = xs} {f} {y} =
(∃ λ x → x ∈ xs × y ∈ f x) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (Any (_≡_ y) ∘ f) xs ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩
y ∈ (xs >>= f) ∎
where open Related.EquationalReasoning
⊛-∈↔ : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {xs y} →
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔ y ∈ (fs ⊛ xs)
⊛-∈↔ {ℓ} fs {xs} {y} =
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔⟨ Σ.cong {a₁ = ℓ} {b₁ = ℓ} {b₂ = ℓ} Inv.id (∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _) ⟩
(∃ λ f → f ∈ fs × ∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Σ.cong {a₁ = ℓ} {b₁ = ℓ} {b₂ = ℓ}
Inv.id ((_ ∎) ⟨ ×⊎.*-cong {ℓ = ℓ} ⟩ Any↔ {a = ℓ} {p = ℓ}) ⟩
(∃ λ f → f ∈ fs × Any (_≡_ y ∘ f) xs) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (λ f → Any (_≡_ y ∘ f) xs) fs ↔⟨ ⊛↔ ⟩
y ∈ (fs ⊛ xs) ∎
where open Related.EquationalReasoning
⊗-∈↔ : ∀ {A B : Set} {xs ys} {x : A} {y : B} →
(x ∈ xs × y ∈ ys) ↔ (x , y) ∈ (xs ⊗ ys)
⊗-∈↔ {A} {B} {xs} {ys} {x} {y} =
(x ∈ xs × y ∈ ys) ↔⟨ ⊗↔′ ⟩
Any (_≡_ x ⟨×⟩ _≡_ y) (xs ⊗ ys) ↔⟨ Any-cong helper (_ ∎) ⟩
(x , y) ∈ (xs ⊗ ys) ∎
where
open Related.EquationalReasoning
helper : (p : A × B) → (x ≡ proj₁ p × y ≡ proj₂ p) ↔ (x , y) ≡ p
helper (x′ , y′) = record
{ to = P.→-to-⟶ (uncurry $ P.cong₂ _,_)
; from = P.→-to-⟶ < P.cong proj₁ , P.cong proj₂ >
; inverse-of = record
{ left-inverse-of = λ _ → P.cong₂ _,_ (P.proof-irrelevance _ _)
(P.proof-irrelevance _ _)
; right-inverse-of = λ _ → P.proof-irrelevance _ _
}
}
mono : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
xs ⊆ ys → Any P xs → Any P ys
mono xs⊆ys =
_⟨$⟩_ (Inverse.to Any↔) ∘′
Prod.map id (Prod.map xs⊆ys id) ∘
_⟨$⟩_ (Inverse.from Any↔)
map-mono : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {xs ys} →
xs ⊆ ys → List.map f xs ⊆ List.map f ys
map-mono f xs⊆ys =
_⟨$⟩_ (Inverse.to map-∈↔) ∘
Prod.map id (Prod.map xs⊆ys id) ∘
_⟨$⟩_ (Inverse.from map-∈↔)
_++-mono_ : ∀ {a} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → xs₁ ++ xs₂ ⊆ ys₁ ++ ys₂
_++-mono_ xs₁⊆ys₁ xs₂⊆ys₂ =
_⟨$⟩_ (Inverse.to ++↔) ∘
Sum.map xs₁⊆ys₁ xs₂⊆ys₂ ∘
_⟨$⟩_ (Inverse.from ++↔)
concat-mono : ∀ {a} {A : Set a} {xss yss : List (List A)} →
xss ⊆ yss → concat xss ⊆ concat yss
concat-mono {a} xss⊆yss =
_⟨$⟩_ (Inverse.to $ concat-∈↔ {a = a}) ∘
Prod.map id (Prod.map id xss⊆yss) ∘
_⟨$⟩_ (Inverse.from $ concat-∈↔ {a = a})
>>=-mono : ∀ {ℓ} {A B : Set ℓ} (f g : A → List B) {xs ys} →
xs ⊆ ys → (∀ {x} → f x ⊆ g x) →
(xs >>= f) ⊆ (ys >>= g)
>>=-mono {ℓ} f g xs⊆ys f⊆g =
_⟨$⟩_ (Inverse.to $ >>=-∈↔ {ℓ = ℓ}) ∘
Prod.map id (Prod.map xs⊆ys f⊆g) ∘
_⟨$⟩_ (Inverse.from $ >>=-∈↔ {ℓ = ℓ})
_⊛-mono_ : ∀ {ℓ} {A B : Set ℓ}
{fs gs : List (A → B)} {xs ys : List A} →
fs ⊆ gs → xs ⊆ ys → (fs ⊛ xs) ⊆ (gs ⊛ ys)
_⊛-mono_ {fs = fs} {gs} fs⊆gs xs⊆ys =
_⟨$⟩_ (Inverse.to $ ⊛-∈↔ gs) ∘
Prod.map id (Prod.map id (Prod.map fs⊆gs (Prod.map xs⊆ys id))) ∘
_⟨$⟩_ (Inverse.from $ ⊛-∈↔ fs)
_⊗-mono_ : {A B : Set} {xs₁ ys₁ : List A} {xs₂ ys₂ : List B} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → (xs₁ ⊗ xs₂) ⊆ (ys₁ ⊗ ys₂)
xs₁⊆ys₁ ⊗-mono xs₂⊆ys₂ =
_⟨$⟩_ (Inverse.to ⊗-∈↔) ∘
Prod.map xs₁⊆ys₁ xs₂⊆ys₂ ∘
_⟨$⟩_ (Inverse.from ⊗-∈↔)
any-mono : ∀ {a} {A : Set a} (p : A → Bool) →
∀ {xs ys} → xs ⊆ ys → T (any p xs) → T (any p ys)
any-mono {a} p xs⊆ys =
_⟨$⟩_ (Equivalence.to $ any⇔ {a = a}) ∘
mono xs⊆ys ∘
_⟨$⟩_ (Equivalence.from $ any⇔ {a = a})
map-with-∈-mono :
∀ {a b} {A : Set a} {B : Set b}
{xs : List A} {f : ∀ {x} → x ∈ xs → B}
{ys : List A} {g : ∀ {x} → x ∈ ys → B}
(xs⊆ys : xs ⊆ ys) → (∀ {x} → f {x} ≗ g ∘ xs⊆ys) →
map-with-∈ xs f ⊆ map-with-∈ ys g
map-with-∈-mono {f = f} {g = g} xs⊆ys f≈g {x} =
_⟨$⟩_ (Inverse.to map-with-∈↔) ∘
Prod.map id (Prod.map xs⊆ys (λ {x∈xs} x≡fx∈xs → begin
x ≡⟨ x≡fx∈xs ⟩
f x∈xs ≡⟨ f≈g x∈xs ⟩
g (xs⊆ys x∈xs) ∎)) ∘
_⟨$⟩_ (Inverse.from map-with-∈↔)
where open P.≡-Reasoning
filter-⊆ : ∀ {a} {A : Set a} (p : A → Bool) →
(xs : List A) → filter p xs ⊆ xs
filter-⊆ _ [] = λ ()
filter-⊆ p (x ∷ xs) with p x | filter-⊆ p xs
... | false | hyp = there ∘ hyp
... | true | hyp =
λ { (here eq) → here eq
; (there ∈filter) → there (hyp ∈filter)
}
finite : ∀ {a} {A : Set a}
(f : Inj.Injection (P.setoid ℕ) (P.setoid A)) →
∀ xs → ¬ (∀ i → Inj.Injection.to f ⟨$⟩ i ∈ xs)
finite inj [] ∈[] with ∈[] zero
... | ()
finite {A = A} inj (x ∷ xs) ∈x∷xs = excluded-middle helper
where
open Inj.Injection inj
module STO = StrictTotalOrder
(DTOProperties.strictTotalOrder ≤-decTotalOrder)
not-x : ∀ {i} → ¬ (to ⟨$⟩ i ≡ x) → to ⟨$⟩ i ∈ xs
not-x {i} ≢x with ∈x∷xs i
... | here ≡x = ⊥-elim (≢x ≡x)
... | there ∈xs = ∈xs
helper : ¬ Dec (∃ λ i → to ⟨$⟩ i ≡ x)
helper (no ≢x) = finite inj xs (λ i → not-x (≢x ∘ _,_ i))
helper (yes (i , ≡x)) = finite inj′ xs ∈xs
where
open P
f : ℕ → A
f j with STO.compare i j
f j | tri< _ _ _ = to ⟨$⟩ suc j
f j | tri≈ _ _ _ = to ⟨$⟩ suc j
f j | tri> _ _ _ = to ⟨$⟩ j
∈-if-not-i : ∀ {j} → i ≢ j → to ⟨$⟩ j ∈ xs
∈-if-not-i i≢j = not-x (i≢j ∘ injective ∘ trans ≡x ∘ sym)
lemma : ∀ {k j} → k ≤ j → suc j ≢ k
lemma 1+j≤j refl = 1+n≰n 1+j≤j
∈xs : ∀ j → f j ∈ xs
∈xs j with STO.compare i j
∈xs j | tri< (i≤j , _) _ _ = ∈-if-not-i (lemma i≤j ∘ sym)
∈xs j | tri> _ i≢j _ = ∈-if-not-i i≢j
∈xs .i | tri≈ _ refl _ =
∈-if-not-i (m≢1+m+n i ∘
subst (_≡_ i ∘ suc) (sym (+-identityʳ i)))
injective′ : Inj.Injective {B = P.setoid A} (→-to-⟶ f)
injective′ {j} {k} eq with STO.compare i j | STO.compare i k
... | tri< _ _ _ | tri< _ _ _ = cong pred $ injective eq
... | tri< _ _ _ | tri≈ _ _ _ = cong pred $ injective eq
... | tri< (i≤j , _) _ _ | tri> _ _ (k≤i , _) = ⊥-elim (lemma (≤-trans k≤i i≤j) $ injective eq)
... | tri≈ _ _ _ | tri< _ _ _ = cong pred $ injective eq
... | tri≈ _ _ _ | tri≈ _ _ _ = cong pred $ injective eq
... | tri≈ _ i≡j _ | tri> _ _ (k≤i , _) = ⊥-elim (lemma (subst (_≤_ k) i≡j k≤i) $ injective eq)
... | tri> _ _ (j≤i , _) | tri< (i≤k , _) _ _ = ⊥-elim (lemma (≤-trans j≤i i≤k) $ sym $ injective eq)
... | tri> _ _ (j≤i , _) | tri≈ _ i≡k _ = ⊥-elim (lemma (subst (_≤_ j) i≡k j≤i) $ sym $ injective eq)
... | tri> _ _ (j≤i , _) | tri> _ _ (k≤i , _) = injective eq
inj′ = record
{ to = →-to-⟶ {B = P.setoid A} f
; injective = injective′
}