36 #ifndef __vtkQuadraticHexahedron_h
37 #define __vtkQuadraticHexahedron_h
60 vtkCell *GetEdge(
int);
61 vtkCell *GetFace(
int);
64 int CellBoundary(
int subId,
double pcoords[3],
vtkIdList *pts);
68 vtkPointData *inPd, vtkPointData *outPd,
70 int EvaluatePosition(
double x[3],
double* closestPoint,
71 int& subId,
double pcoords[3],
72 double& dist2,
double *weights);
73 void EvaluateLocation(
int& subId,
double pcoords[3],
double x[3],
76 void Derivatives(
int subId,
double pcoords[3],
double *values,
77 int dim,
double *derivs);
78 virtual double *GetParametricCoords();
86 vtkPointData *inPd, vtkPointData *outPd,
94 int IntersectWithLine(
double p1[3],
double p2[3],
double tol,
double& t,
95 double x[3],
double pcoords[3],
int& subId);
102 static void InterpolationFunctions(
double pcoords[3],
double weights[20]);
105 static void InterpolationDerivs(
double pcoords[3],
double derivs[60]);
120 static int *GetEdgeArray(
int edgeId);
121 static int *GetFaceArray(
int faceId);
127 void JacobianInverse(
double pcoords[3],
double **inverse,
double derivs[60]);
represent and manipulate cell attribute data
Abstract class in support of both point location and point insertion.
virtual void InterpolateDerivs(double pcoords[3], double derivs[60])
virtual void InterpolateFunctions(double pcoords[3], double weights[20])
abstract superclass for non-linear cells
dynamic, self-adjusting array of double
static void InterpolationDerivs(double pcoords[3], double derivs[60])
cell represents a parabolic, 8-node isoparametric quad
a simple class to control print indentation
list of point or cell ids
abstract superclass for arrays of numeric data
a cell that represents a linear 3D hexahedron
void PrintSelf(ostream &os, vtkIndent indent)
object to represent cell connectivity
cell represents a parabolic, isoparametric edge
cell represents a parabolic, 20-node isoparametric hexahedron
static void InterpolationFunctions(double pcoords[3], double weights[20])
vtkDoubleArray * CellScalars
represent and manipulate 3D points