Row Reduction

Copyright (c) 2012 Young W. Lim.					
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".					
Please send corrections (or suggestions) to youngwlim@hotmail.com .					
This document was produced by using OpenOffice and Octave.					

Linear Equations

Linear Equations

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} b_1 \end{bmatrix}$$

$$\begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} b_2 \end{bmatrix}$$

$$\begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b_m$$

Example

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} = \begin{pmatrix} +8 \\ -11 \\ -3 \end{pmatrix}$$

Gauss-Jordan Elimination

Gauss-Jordan Elimination - Step 1

$$+2x_1 + x_2 - x_3 = 8$$
 (L_1)

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 \qquad (L_3)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$$
 $(\frac{1}{2} \times L_1)$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = 4$$
 $(\frac{1}{2} \times L_1)$

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 (L_3)$$

Gauss-Jordan Elimination – Step 2

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$-3x_1 - x_2 + 2x_3 = -11 \qquad (L_2)$$

$$-2x_1 + x_2 + 2x_3 = -3 (L_3)$$

+3 +3/2 -3/2

$$+3x_1 + \frac{3}{2}x_2 - \frac{3}{2}x_3 = +12$$
 $3 \times L_1$

$$-3x_1 - x_2 + 2x_3 = -11 (L_2)$$

$$+2x_1 + \frac{2}{2}x_2 - \frac{2}{2}x_3 = +8$$

$$-2x_1 + x_2 + 2x_3 = -3$$

$$(L_3)$$

-3 -1 +2 -11

+12

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L_1)

$$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1 \qquad (3 \times L_1 + L_2)$$

$$0x_1 + 2x_2 + 1x_3 = +5$$
 $(2 \times L_1 + L_3)$

Gauss-Jordan Elimination – Step 3

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$0x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = +1 \qquad (L_2)$$

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3)$$

$$0x_1 + 1x_2 + 1x_3 = +2 (2 \times L_2)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$0x_1 + 1x_2 + 1x_3 = +2 (2 \times L_2)$$

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3)$$

Gauss-Jordan Elimination - Step 4

$$+1x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = +4 \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 1x_{3} = +2 \qquad (L_{2})$$

$$0x_{1} + 2x_{2} + 1x_{3} = +5 \qquad (L_{3})$$

$$0x_1 - 2x_2 - 2x_3 = -4 [-2 \times L_2]$$

$$0x_1 + 2x_2 + 1x_3 = +5 (L_3)$$

$$+ 1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$

$$0x_1 + 1x_2 + 1x_3 = +2$$

$$0x_1 + 0x_2 - 1x_3 = +1$$

$$(L_1)$$

$$(L_2)$$

Gauss-Jordan Elimination – Step 5

$$+ 1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$

$$0x_1 + 1x_2 + 1x_3 = +2$$

$$0x_1 + 0x_2 - 1x_3 = +1$$

$$(L_1)$$

$$(L_2)$$

$$0x_1 - 0x_2 + 1x_3 = -1 (-1 \times L_3)$$

Forward Phase

$$\begin{bmatrix} +2 & +1 & -1 & +8 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1/2 & +1/2 & +1 \\ 0 & +2 & +1 & +5 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & +2 & +1 & +5 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & -1 & +1 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & +4 \\ 0 & -1 & -1/2 & +4 \\ 0 & -1 & -1/2 & +4 \\ 0 & -1 & -1/2 & +4 \\ 0 & -1/2 & -1/2 & +4 \\ 0$$

Forward Phase - Gaussian Elimination

Gauss-Jordan Elimination - Step 6

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$0x_1 + 1x_2 + 1x_3 = +2 (L_2)$$

$$0x_1 + 0x_2 + 1x_3 = -1 (L_3)$$

$$0x_1 + 0x_2 + \frac{1}{2}x_3 = -\frac{1}{2} \qquad \left(+\frac{1}{2} \times L_3 \right)$$

$$+1x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = +4$$
 (L₁)

$$0x_1 + 0x_2 - 1x_3 = +1 \qquad \boxed{-1 \times L_3}$$

$$0x_1 + 1x_2 + 1x_3 = +2 (L_2)$$

$$0 \quad 0 \quad +1/2 \quad -1/2$$

$$+1x_1 + \frac{1}{2}x_2 + 0x_3 = +\frac{7}{2}$$
 $(+\frac{1}{2} \times L_3 + L_1)$

$$0x_1 + 1x_2 + 0x_3 = +3 \qquad (-1 \times L_3 + L_2)$$

$$0x_1 + 0x_2 + 1x_3 = -1 (L_3)$$

Gauss-Jordan Elimination – Step 7

$$+1x_{1} + \frac{1}{2}x_{2} + 0x_{3} = +\frac{7}{2} \qquad (L_{1})$$

$$0x_{1} + 1x_{2} + 0x_{3} = +3 \qquad (L_{2})$$

$$0x_{1} + 0x_{2} + 1x_{3} = -1 \qquad (L_{3})$$

$$\begin{bmatrix} +1 & +1/2 & 0 & +7/2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1 \end{bmatrix}$$

$$0x_1 - \frac{1}{2}x_2 + 0x_3 = -\frac{3}{2}$$

$$+1x_1 + 0x_2 - 0x_3 = +2$$

$$(L_1)$$

$$+1x_1 + 0x_2 - 0x_3 = +2$$
 $(+1 \times L_3 + L_1)$
 $0x_1 + 1x_2 + 0x_3 = +3$ (L_2)
 $0x_1 + 0x_2 + 1x_3 = -1$ (L_3)

Backward Phase

15

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination

$$\begin{bmatrix} +2 & +1 & -1 & | & +8 \\ -3 & -1 & +2 & | & -11 \\ -2 & +1 & +2 & | & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & | & +4 \\ -3 & -1 & +2 & | & -11 \\ -2 & +1 & +2 & | & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & | & +4 \\ 0 & +1/2 & +1/2 & | & +1 \\ 0 & +2 & +1 & | & +5 \end{bmatrix} \longrightarrow \begin{bmatrix} +1 & +1/2 & -1/2 & | & +4 \\ 1 & +1/2 & -1/2 & | & +4 \end{bmatrix}$$

Backward Phase

Echelon Forms (1)

zero rows

Should be grouped at the bottom

A leading 1

The 1st non-zero element should be one

The leading 1 of the lower row should be farther to the right than the leading 1 of the higher row

Echelon Forms (2)

zero rows

Should be grouped at the bottom

Echelon Forms (3)

non-zero row

A leading one

The 1st non-zero element should be one

Echelon Forms (3)

Any successive non-zero rows

The leading **1** of the lower row should be farther to the **right** than the leading **1** of the higher row

The possible location of the leading one

Could be like this

0 0 1 * • • • *

Or like this

0 00 00 • • • • •

Or like this

0 0000001

Reduced Echelon Forms

Reduced Echelon Forms

Any column that contains a leading one

All other elements except the leading one are all zeros

Examples

Reduced Echelon Form

Linear Systems of 3 Unknowns

(Eq 1)
$$\longrightarrow$$
 a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1
(Eq 2) \longrightarrow a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2
(Eq 3) \longrightarrow a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3

Leading and Free Variables

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$$

$$1(x_1) + 3 \cdot x_3 = -1$$

$$1(x_2) - 4 \cdot x_3 = 2$$

with a leading 1 leading variables

Other remaining varaible

free variables

Free Variables as Parameters

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$$

$$1(x_1) + 3(x_3) = -1$$

$$1(x_2) - 4(x_3) = 2$$

$$1(x_1) - 5(x_2) + 1(x_3) = 4$$

Solve for a leading variable

$$x_1 = -1 - 3 \cdot x_3$$

 $x_2 = 2 + 4 \cdot x_3$

$$x_1 = 4 + 5 \cdot x_2 - 1 \cdot x_3$$

Treat a free variable as a parameter

$$x_3 = t$$

$$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \\ x_3 = t \end{cases}$$

$$x_{2} = s x_{3} = t$$

$$\begin{cases} x_{1} = 4 + 5 \cdot x_{2} - 1 \cdot x_{3} \\ x_{2} = s \\ x_{3} = t \end{cases}$$

Free Variables as Parameters

1	0	0	0
0	1	2	0
0	0	0	1

1	-5	1	4
0	0	0	0
0	0	0	0

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$$

$$1(x_1) + 3 \cdot x_3 = -1$$

$$1(x_2) - 4 \cdot x_3 = 2$$

$$1(x_1) - 5(x_2) + 1(x_3) = 4$$

$$\begin{cases} x_1 = 4 + 5 \cdot x_2 - 1 \cdot x_3 \\ x_2 = s & \qquad \text{free variable} \\ x_3 = t & \qquad \text{free variable} \end{cases}$$

Consistent Linear System

A linear system with at least one solution

A Consistent Linear System

A linear system with no solutions

A Inconsistent Linear System

General Solution

A linear system with infinitely many solutions

Solve for a leading variable

Treat a free variable as a parameter

A set of parametric equations

All solutions can be obtained by assigning numerical values to those parmeters

Called a general solution

Homogeneous System

All constant terms are zero

$$egin{aligned} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ & \vdots & & \vdots & & \vdots \ a_{m1} & a_{m2} & \cdots & a_{mn} \ \end{aligned}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

All constant terms are zero

Solutions of a Homogeneous System

All homogeneous system passes through the origin

The homogeneous system has

- * only the trivial solution
- * many solutions in addition to the trivial solution

Trivial Solution

satisfies all homogeneous equation

All homogeneous system passes through the origin

Augmented Matrix

Augmented matrix of a homogeneous system

Reduced Row Echelon Form

Elementary row operations do <u>not</u> <u>alter</u> the zero column of in a matrix

The augmented zero column is preserved in the reduced echelon form of a homogeneous system

Reduced Echelon Form

zero rows

Free Variable Theroem

A homogeneous linear system with *n* unknowns

If the reduced row echelon form of its augmented matrix has

r non-zero rows n-r free variables

infinitely many solutions

Pivot Positions

36

Pulse

Pulse

References

- [1] http://en.wikipedia.org/
- [2] Anton & Busby, "Contemporary Linear Algebra"
- [3] Anton & Rorres, "Elementary Linear Algebra"