Row Reduction

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Linear Equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
\end{aligned}
$$

Linear Equations

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots & +a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots & +a_{2 n} x_{n}=b_{2} \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots & \vdots \\
a_{m n} x_{n}=b_{m}
\end{array}
$$

$$
\left.\begin{array}{|ccc}
a_{11} & \cdots & a_{1 n} \\
\sum_{j=1}^{n} a_{1 j} \cdot X_{j}=b_{1} & \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
b_{1}
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

$$
\left[\begin{array}{ccc}
a_{21} & \cdots & a_{2 n} \\
\sum_{j=1}^{n} a_{2 j} \cdot X_{j}=b_{2} & \\
x_{2} \\
x_{2} \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
b_{2}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
a_{m 1} & a_{m 2} & \cdots \\
\sum_{j=1}^{n} a_{m j} \cdot X_{j}=a_{m n}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=b_{m}
$$

Example

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots & +a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots & +a_{2 n} x_{n}= & b_{2} \\
\vdots & \vdots & \vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots & +a_{m n} x_{n}= & b_{m}
\end{array}
$$

$$
2 x_{1}+1 x_{2}-1 x_{3}=+8
$$

$$
-3 x_{1}-1 x_{2}+2 x_{3}=-11
$$

$$
-2 x_{1}+1 x_{2}+2 x_{3}=-3
$$

$\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right) \quad\left(\begin{array}{ccc}+2 & +1 & -1 \\ -3 & -1 & +2 \\ -2 & +1 & +2\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{n}\end{array}\right)=\left(\begin{array}{c}+8 \\ -11 \\ -3\end{array}\right)$

Gauss-Jordan Elimination

$$
\begin{aligned}
\left(\begin{array}{ccc}
+2 & +1 & -1 \\
-3 & -1 & +2 \\
-2 & +1 & +2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
+8 \\
-11 \\
-3
\end{array}\right) & \square\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \\
& \square\left(\begin{array}{ll}
\square
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 1

$$
\left.\left.\begin{array}{ll}
+2 x_{1}+x_{2}-x_{3}=8 & \left(L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3}=-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3}=-3 & \left(L_{3}\right) \\
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=4 & \left(\frac{1}{2} \times L_{1}\right) \\
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=4 & \left(\frac{1}{2} \times L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3}=-11 & \left(L_{2}\right) \\
-2 & +1 \\
+2 x_{1}+x_{2}+2 x_{3}=-3 & \left(L_{3}\right)
\end{array}\right] \begin{array}{cc|c}
+2 & -11 \\
-3
\end{array}\right]
$$

Gauss-Jordan Elimination - Step 2

$$
\left.\begin{array}{rlrl|l}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & \left(L_{1}\right) \\
-3 x_{1}-x_{2}+2 x_{3} & =-11 & \left(L_{2}\right) \\
-2 x_{1}+x_{2}+2 x_{3} & =-3 & \left(L_{3}\right) & \left(\begin{array}{ccc}
+1 & +1 / 2 & -1 / 2 \\
\hline-3 & -1 & +2
\end{array}\right. & +11 \\
-2 & +1 & +2 & -3
\end{array}\right]
$$

Gauss-Jordan Elimination - Step 3

$+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4$	$\left(L_{1}\right)$	$\left\|\begin{array}{ccc} +1 & +1 / 2 & -1 / 2 \\ 0 & +1 / 2 & +1 / 2 \\ 0 & +2 & +1 \end{array}\right\|$			$\begin{aligned} & +4 \\ & +1 \\ & +5 \end{aligned}$
$0 x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}=+1$	$\left(L_{2}\right)$				
$0 x_{1}+2 x_{2}+1 x_{3}=+5$	$\left(L_{3}\right)$				
$0 x_{1}+1 x_{2}+1 x_{3}=+2$	$\left(2 \times L_{2}\right)$	0	+1	+1	+2
$+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4$	$\left(L_{1}\right)$	+1	+1/2	$-1 / 2$	+4
$0 x_{1}+1 x_{2}+1 x_{3}=+2$	$\left(2 \times L_{2}\right)$	0	+1)	+1	+2
$0 x_{1}+2 x_{2}+1 x_{3}=+5$	$\left(L_{3}\right)$	0	+2	+1	+5

Gauss-Jordan Elimination - Step 4

$$
\begin{align*}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 \tag{1}\\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 \\
0 x_{1}+2 x_{2}+1 x_{3} & =+5
\end{align*}
$$

$$
\left[\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right]
$$

$$
\begin{array}{ll}
0 x_{1}-2 x_{2}-2 x_{3}=-4 & --2 \times L_{2} \\
0 x_{1}+2 x_{2}+1 x_{3}=+5 & \left(L_{3}\right)
\end{array}
$$

$\begin{array}{llll}0 & -2 & -2 & -4 \\ 0 & +2 & +1 & +5\end{array}$

$$
\begin{aligned}
+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} & =+4 & & \left(L_{1}\right) \\
0 x_{1}+1 x_{2}+1 x_{3} & =+2 & & \left(L_{2}\right) \\
0 x_{1}+0 x_{2}-1 x_{3} & =+1 & & \left.-2 \times L_{2}+L_{3}\right)
\end{aligned}
$$

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right)
$$

Gauss-Jordan Elimination - Step 5

$\begin{array}{r} +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\ 0 x_{1}+1 x_{2}+1 x_{3}=+2 \end{array}$	$\left(L_{1}\right)$ $\left(L_{2}\right)$	+1 0	$+1 / 2$ +1	$-1 / 2$ +1	+4 +2
$0 x_{1}+0 x_{2}-1 x_{3}=+1$	$\left(L_{3}\right)$	0	0	-1)	+1
$0 x_{1}-0 x_{2}+1 x_{3}=-1$	$\left(-1 \times L_{3}\right)$	0	0	+1	-1
$+1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4$	$\left(L_{1}\right)$	+1	+1/2	-1/2	+4
$0 x_{1}+1 x_{2}+1 x_{3}=+2$	$\left(L_{2}\right)$	0	+1	+1	+2
$0 x_{1}+0 x_{2}+1 x_{3}=-1$	$\left(-1 \times L_{3}\right)$	0	0	+1)	-1

Forward Phase

$$
\begin{aligned}
& \left(\begin{array}{lll|l}
+2 & +1 & -1 & +8 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
-3 & -1 & +2 & -11 \\
-2 & +1 & +2 & -3
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
+1 & +1 / 2 & -1 / 2 \\
\hline 0 & +1 / 2 & +1 / 2 \\
+1 \\
0 & +2 & +1
\end{array}+5\right. \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & +2 & +1 & +5
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & -1 & +1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Forward Phase - Gaussian Elimination

Gauss-Jordan Elimination - Step 6

$$
\begin{aligned}
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
& 0 x_{1}+1 x_{2}+1 x_{3}=+2 \\
& 0 x_{1}+0 x_{2}+1 x_{3}=-1 \\
& \left(L_{1}\right) \\
& \left(L_{2}\right) \\
& \left(L_{3}\right) \\
& 0 x_{1}+0 x_{2}+\frac{1}{2} x_{3}=-\frac{1}{2} \\
& +\frac{1}{2} \times L_{3} \\
& +1 x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}=+4 \\
& \left(L_{1}\right) \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & \boxed{+1} & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \\
& 0 \quad 0 \quad+1 / 2 \quad-1 / 2 \\
& +1+1 / 2-1 / 2+4 \\
& 0 x_{1}+0 x_{2}-1 x_{3}=+1 \\
& -1 \times L_{3} \\
& 0 x_{1}+1 x_{2}+1 x_{3}=+2 \\
& \left(L_{2}\right) \\
& \begin{array}{cccc}
0 & 0 & -1 & +1 \\
0 & +1 & +1 & +2
\end{array} \\
& +1 x_{1}+\frac{1}{2} x_{2}+0 x_{3}=+\frac{7}{2} \quad\left(+\frac{1}{2} \times L_{3}+L_{1}\right) \\
& 0 x_{1}+1 x_{2}+0 x_{3}=+3 \\
& \left(-1 \times L_{3}+L_{2}\right) \\
& 0 x_{1}+0 x_{2}+1 x_{3}=-1 \\
& \left(L_{3}\right) \\
& \left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
\end{aligned}
$$

Gauss-Jordan Elimination - Step 7

$+1 x_{1}+\frac{1}{2} x_{2}+0 x_{3}$	$=+\frac{7}{2}$
$0 x_{1}+1 x_{2}+0 x_{3}$	$=+3$
$0 x_{1}+0 x_{2}+1 x_{3}$	$=-1$

$\left(\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

$$
0 x_{1}-\frac{1}{2} x_{2}+0 x_{3}=-\frac{3}{2} \quad-\frac{1}{2} \times L_{2}
$$

$$
+1 x_{1}+0 x_{2}-0 x_{3}=+2
$$

$$
\left(L_{1}\right)
$$

$$
\begin{array}{cccc}
0 & -1 / 2 & 0 & -3 / 2 \\
+1 & +1 / 2 & 0 & +7 / 2
\end{array}
$$

$+1 x_{1}+0 x_{2}-0 x_{3}$	$=+2$
$0 x_{1}+1 x_{2}+0 x_{3}$	$=+3$
$0 x_{1}+0 x_{2}+1 x_{3}$	$=-1$

0 \& +1 \& 0 \& +3

0 \& 0 \& +1 \& -1\end{array}\right]\)

Backward Phase

$$
\left(\begin{array}{ccc|c}
+1 & +1 / 2 & -1 / 2 & +4 \\
0 & +1 & +1 & +2 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & +1 / 2 & 0 & +7 / 2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}
+1 & 0 & 0 & +2 \\
0 & +1 & 0 & +3 \\
0 & 0 & +1 & -1
\end{array}\right)
$$

Gauss-Jordan Elimination

Forward Phase - Gaussian Elimination
$\left.\begin{array}{l}\left(\begin{array}{ccc|c}+2 & +1 & -1 & +8 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}\oplus 1 & +1 / 2 & -1 / 2 & +4 \\ -3 & -1 & +2 & -11 \\ -2 & +1 & +2 & -3\end{array}\right]\end{array} \Rightarrow\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 / 2 & +1 / 2 & +1 \\ 0 & +2 & +1 & +5\end{array}\right]\right)$

Backward Phase
$\left(\begin{array}{ccc|c}+1 & +1 / 2 & -1 / 2 & +4 \\ 0 & +1 & +1 & +2 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left[\begin{array}{ccc|c}+1 & +1 / 2 & 0 & +7 / 2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right) \Rightarrow\left(\begin{array}{ccc|c}+1 & 0 & 0 & +2 \\ 0 & +1 & 0 & +3 \\ 0 & 0 & +1 & -1\end{array}\right)$

Echelon Forms (1)

zero rows $\quad \square$	Should be grouped at the bottom
non-zero row	A leading 1
	The $1^{\text {st }}$ non-zero element should be one
Any successive non-zero rows	The leading 1 of the lower row should be farther to the right than the leading 1 of the higher row

Echelon Forms (2)

zero rows
Should be grouped at the bottom

Echelon Forms (3)

non-zero row
A leading one
The $1^{\text {st }}$ non-zero element should be one

Echelon Forms (3)

Any successive

non-zero rows | The leading 1 of the lower row |
| :--- |
| should be farther to the right than |
| the leading 1 of the higher row |

The possible location of the leading one

Could be like this	0 (0)(1)
Or like this	0 (0) (0) 1
Or like this	0 (0)(0)

Reduced Echelon Forms

$\begin{array}{|ll|}\hline \text { zero rows } \\
\text { non-zero row } \\
\text { Any successive } \\
\text { non-zero rows }\end{array}$ Should be grouped at the bottom \(\left.\begin{array}{l}The leading 1 of the lower row

Thould be farther to the right than 1

The leading 1 of the higher row\end{array}\right\}\)| All other elements except the leading |
| :--- |
| one are all zeros |

Reduced Echelon Forms

Any column that contains a leading one

All other elements except the leading one are all zeros

Examples

Reduced Echelon Form

Linear Systems of 3 Unknowns

$($ Eq 1$) \Rightarrow a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}$
$($ Eq 2$) \Rightarrow a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}$
$(E q 3) \Rightarrow a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}$

Leading and Free Variables

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array} \begin{array}{rl}
{\left[\begin{array}{lll|l}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{array} \begin{array}{ll}
1 & -5 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

Other remaining varaible free variables

Free Variables as Parameters

Free Variables as Parameters

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& 0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1 \\
& 0 \neq 1 \\
& \left(\begin{array}{ccc|c}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & -5 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& 1\left(x_{1}+3 \cdot x_{3}=-1\right. \\
& \left.1 \cdot x_{1}\right)-5 \cdot x_{2}+1 \cdot x_{3}=4 \\
& \left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t \Leftarrow \text { free variable }
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{1}=4+5 \cdot x_{2}-1 \cdot x_{3} \\
x_{2}=s \quad \text { free variable } \\
x_{3}=t \quad \text { free variable }
\end{array}\right.
\end{aligned}
$$

Consistent Linear System

A linear system with at least one solution

A Consistent Linear System

A linear system with no solutions

A Inconsistent Linear System

General Solution

A linear system with infinitely many solutions

Solve for a leading variable
Treat a free variable as a parameter
A set of parametric equations
All solutions can be obtained
by assigning numerical values to those parmeters
\Rightarrow Called a general solution

Homogeneous System

$$
\begin{aligned}
& \begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\ldots & +a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots & +a_{2 n} x_{n}= \\
\vdots & \vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots & +a_{m n} x_{n}=0
\end{array} \\
& \left.\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \\
& \text { All constant terms } \\
& \text { are zero } \\
& \text { All constant terms } \\
& \text { are zero }
\end{aligned}
$$

Solutions of a Homogeneous System

All homogeneous
system passes
through the origin

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0
\end{aligned}
$$

The homogeneous system has

* only the trivial solution
* many solutions in addition to the trivial solution

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0
$$

\(\left($$
\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}
$$\right)\left(\begin{array}{c}x_{1}

x_{2}

\vdots

x_{n}\end{array}\right)=\)| 0 |
| :---: |
| 0 |
| \vdots |
| 0 |

Trivial Solution

satisfies all homogeneous equation

All homogeneous system passes through the origin

Augmented Matrix

$$
\begin{aligned}
& \begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots \\
\vdots \\
\vdots
\end{array} \\
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}
\end{aligned}
$$

Augmented matrix of a homogeneous system

$\left(\begin{array}{cccc|c}a_{11} & a_{12} & \ldots & a_{1 n} & 0 \\ a_{21} & a_{22} & \ldots & a_{2 n} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n} & 0\end{array}\right)$

Reduced Row Echelon Form

Elementary row operations do not alter the zero column of in a matrix

The augmented zero column is preserved in the reduced echelon form of a homogeneous system

Free Variable Theroem

A homogeneous linear system with \boldsymbol{n} unknowns

If the reduced row echelon form of its augmented matrix has r non-zero rows
$\boldsymbol{n}-\boldsymbol{r}$ free variables

Pivot Positions

Pulse

$\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$

Pulse

References

[1] http://en.wikipedia.org/
[2] Anton \& Busby, "Contemporary Linear Algebra"
[3] Anton \& Rorres, "Elementary Linear Algebra"

