Double Integrals (5A)

- Double Integral
- Double Integrals in Polar Coordinates
- Green's Theorem

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Area and Volume

$$
\begin{aligned}
& A=\iint_{R} d A \\
& V=\iint_{R} f(x, y) d A
\end{aligned}
$$

Type I and Type II

Fubini's Theorem

Type A and Type B

$$
\begin{aligned}
& \iint_{R} f(r, \theta) d A \\
& =\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r, \theta) r d r d \theta
\end{aligned}
$$

Equivalence in 3-D

In an open connected region

Path Independence $\quad \int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$

Conservative \boldsymbol{F}

Closed path C

$$
\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=0
$$

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x} \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}
$$

$$
\operatorname{curl} \boldsymbol{F}=\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)+\left(\frac{\partial Q}{\partial z}-\frac{\partial R}{\partial y}\right)
$$

$$
\boldsymbol{F}=P \mathbf{i}+Q \boldsymbol{j}+R \boldsymbol{k} \quad \boldsymbol{F}=\nabla \Phi=\frac{\partial \Phi}{\partial x} \mathbf{i}+\frac{\partial \Phi}{\partial y} \boldsymbol{j}+\frac{\partial \Phi}{\partial z} \boldsymbol{k}
$$

2-Divergence

Flux across rectangle boundary

$$
\approx\left(\frac{\partial M}{\partial x} \Delta x\right) \Delta y+\left(\frac{\partial N}{\partial y} \Delta y\right) \Delta x \quad=\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) \Delta x \Delta y
$$

Flux density
Divergence of \mathbf{F}
Flux Density

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] D.G. Zill, "Advanced Engineering Mathematics"

