EigenSpaces (5A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

EigenValues and EigenVectors

$$
\begin{aligned}
& \text { n } \times \text { n } \\
& \left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & & a_{1 n} \\
a_{21} & a_{22} & \cdots & & a_{2 n} \\
\vdots & \vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\lambda\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& \boldsymbol{A x}=\lambda \boldsymbol{x} \\
& \text { eigenvector }
\end{aligned}
$$

A nxn Matrix A (1)

1. A is invertible
2. $\mathbf{A x}=\mathbf{0}$ has only the trivial solution
3. $\operatorname{The} \operatorname{RREF}(A)=I_{n}$
4. A can be written as a product of elementary matrix
5. $\mathbf{A x}=\mathbf{b}$ is consistent for every $\mathrm{n} \times 1 \mathbf{b}$
6. $\mathbf{A x}=\mathbf{b}$ has exactly one solution for every $\mathrm{n} \times 1 \mathbf{b}$
7. $\operatorname{det}(\mathbf{A}) \neq 0$
8. The column vectors are linearly independent
9. The row vectors are linearly independent
10. The column vectors span R^{n}
11. The row vectors span R^{n}
12. The column vectors form a basis for R^{n}
13. The row vectors form a basis for R^{n}
14. $\operatorname{rank}(\mathbf{A})=n$
15. $\operatorname{nullity}(\mathbf{A})=0$
16. The orthogonal complement of the null space is R^{n}
17. The orthogonal complement of the row space is $\{\mathbf{0}\}$

A nxn Matrix A (2)

18. The range of T_{A} is R^{n}
19. T_{A} is one-to-one
20. $\lambda=0$ is not the eigenvalue of A

References

[1] http://en.wikipedia.org/
[2] Anton, et al., Elementary Linear Algebra, 10 ${ }^{\text {th }}$ ed, Wiley, 2011
[3] Anton, et al., Contemporary Linear Algebra,

