pb2test3.mw

restart:with(DEtools):with(plots):assume(n,integer):

Problem: $u_{xx} = u_{tt} + 10$ and u(0, t) = 0 and u(1, t) = 0, ICs u(x, 0) = 0 and $u_t(x, 0) = x(1 - x)$

By using u(x, t) = w(x, t) + v(x) we can break the problem up into two problems.

$$\begin{aligned} w_{xx} + v_{xx} &= w_{tt} + 10 \text{ with } w(x,0) + v(x) = 0 \text{ , } w_t(x,0) = x(1-x) \text{ , } w(0,t) + v(0) = 0 \text{ , } \\ w(1,t) + v(1) &= 0 \end{aligned}$$

Problem 1: $v_{xx} = 10$ v(0) = 0 v(1) = 0 gives the solution $v(x) = 5 \cdot x^2 - 5 \cdot x$

$$v := x \to 5 x^2 - 5 x$$
 (1)

 $v := x - 5 * x^2 - 5 * x;$ $v := x \to 5 x^2 - 5 x$ Problem 2: Find the solution to $w_{xx} = w_{tt}$ with w(x, 0) = -v(x), $w_t(x, 0) = x(1 - x)$, w(0, t) = 0, w(1, t) = 0

 $w(x, t) = X(x) \cdot T(t)$ substitute into PDE $\frac{X''}{X} = \frac{T'}{T} = constant$

Case I: constant > 0 X(x) = 0 trivial solution.

Case II: constant = 0 again X(x) = 0 trivial solution

Case III: constant < 0

 $X'' - \lambda^2 X = 0 \quad \text{leads to } X(x) = c_1 \cos(\lambda \cdot x) + c_2 \cdot \sin(\lambda \cdot x) \quad \text{using the BCs}, X(0) = 0 \text{ and } X(1) = 0 \text{ the } X(1) = 0$ equation becomes $X(x) = 0 = \sin(\lambda)$ from which we deduce that $\lambda_n = n \cdot \pi$

> lambda:=n*Pi;

$$\lambda := n \sim \pi \tag{2}$$

> X:=(n,x)->sin(lambda*x);

da*x);

$$X := (n, x) \rightarrow \sin(\lambda x)$$
 (3)

Next find to the solution for $\frac{T''}{T} = -\lambda^2$, using the lambda from above the solution is another sine cosine pair.

$$T_n(t) = a_n \cdot \cos(\lambda_n \cdot t) + b_n \cdot \sin(\lambda_n \cdot t)$$

> T:=(n,t)->(a(n)*cos(lambda*t)+b(n)*sin(lambda*t)); $T:=(n,t)\rightarrow a(n)\cos(\lambda t)+b(n)\sin(\lambda t)$ (4)

Each product $w_n(x, t) = X_n(x) \cdot T_n(t)$ is a solution of the pde $w_{xx} = w_{tt}$ w(0, t) = 0, w(1, t) = 0 a sum of these products is also a solution. Using the Fourier Series approach the solution is presented as.

$$w(x,t) = \sum_{n=1}^{\infty} \sin(\lambda_n \cdot x) \cdot (a_n \cdot \cos(\lambda_n \cdot t) + b_n \cdot \sin(\lambda_n \cdot t))$$

The coefficients a_n and b_n are found by using the initial conditions for the homogeneous problem $w_{xx} = w_{tt}$. Use the initial condition w(x, 0) = -v(x) to find a_n . The process is to set t = 0 and then w(x, 0) = f(x) - v(x), in this problem f(x) = 0. Then each side is multiplied by the eigenfunction $X_n(x)$ and integrated of the length of the interval. Using orthogonality the resulting equation will allow us to solve for a_n as shown below.

$$w(x,0) = f(x) - v(x) = -5 \cdot x^2 + 5 \cdot x = \sum_{n=1}^{\infty} \sin(\lambda_n \cdot x) \cdot a_n$$

$$a_n = \frac{\int_0^1 (-5 \cdot x^2 + 5 \cdot x) \cdot \sin(\lambda_n \cdot x) dx}{\int_0^1 \sin^2(\lambda_n \cdot x) dx}$$

> a:=n->int(-v(x)*sin(lambda*x),x=0..1)/(int(sin(lambda*x)^2,x=0.
.1));

$$a := n \to \frac{\int_0^1 \left(-v(x) \sin(\lambda x)\right) dx}{\int_0^1 \sin(\lambda x)^2 dx}$$
 (5)

> a(1);

$$-\frac{20(-1+(-1)^{n\sim})}{n^{\sim 3}\pi^{3}}$$
 (6)

The b_n coefficients are found in the same manner as the a_n except the second boundary condition is used.

$$w_t(x,t) = \sum_{n=1}^{\infty} \sin(\lambda_n \cdot x) \cdot (-a_n \cdot \lambda_n \cdot \sin(\lambda_n \cdot t) + b_n \cdot \lambda_n \cdot \cos(\lambda_n \cdot t))$$

use the initial conditions to find the coefficients $w(x, 0) = x \cdot (1 - x)$

$$\begin{split} w_t(x,0) &= g(x) = x \cdot (1-x) = \sum_{n=1}^{\infty} \sin\left(\lambda_n \cdot x\right) \cdot b_n \cdot \lambda_n \\ b_n &= \frac{1}{\lambda_n} \frac{\int_0^1 (x \cdot (1-x)) \cdot \sin\left(\lambda_n \cdot x\right) dx}{\int_0^1 \sin^2\left(\lambda_n \cdot x\right) dx} \end{split}$$

$$g := x \to x \cdot (1 - x)$$

$$g := x \to x \cdot (1 - x)$$
(7)

 $g := x \rightarrow x \cdot (1 - x)$ $g := x \rightarrow x \cdot (1 - x)$ $\Rightarrow b := n - \sin(g(x) \cdot \sin(\lambda x), x = 0..1) / (\lambda x)$ $^2, x = 0..1));$

$$b := n \to \frac{\int_0^1 g(x) \sin(\lambda x) dx}{\lambda \left(\int_0^1 \sin(\lambda x)^2 dx\right)}$$
(8)

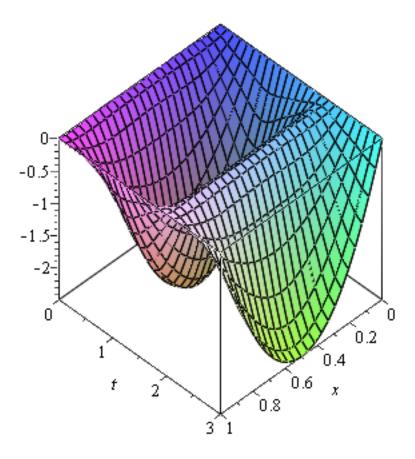
$$-\frac{4(-1+(-1)^{n\sim})}{n\sim \frac{4\pi^4}{\pi^4}}$$
 (9)

$$-\frac{4(-1+(-1)^{n})}{n^{4}\pi^{4}}$$
> $u:=(x,t)-v(x)+sum(X(n,x)*T(n,t),n=1..4);$

$$u:=(x,t)\to v(x)+\sum_{n=1}^{4}X(n,x)T(n,t)$$
(10)

> plot3d(u(x,t),x=0..1,t=0..3,axes=box,title="Constant applied

Constant applied force



> animate(u(x,t),x=0..1,t=0..5,frames=200);

