CLTI Correlation (2A)

Copyright (c) 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Correlation

How signals move relative to each other

Positively correlated the same direction

> Average of product > product of averages

Negatively correlated the opposite direction
Average of product < product of averages

Uncorrelated

Correlation Function

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y^{*}(t+\tau) d t=\int_{-\infty}^{+\infty} x(t-\tau) y^{*}(t) d t
$$

Both real

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t=\int_{-\infty}^{+\infty} x(t-\tau) y(t) d t
$$

Uncorrelated

Correlation and Convolution

Both real

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t=\int_{-\infty}^{+\infty} x(t-\tau) y(t) d t
$$

Convoluion

$$
\begin{array}{rlr}
x(t) * y(t) & =\int_{-\infty}^{+\infty} x(t-\tau) y(\tau) d \tau \\
R_{x y}(\tau)= & x(-\tau) * y(\tau) & \\
x(-t) & X^{*}(f) \\
R_{x y}(\tau) & X^{*}(f) Y(f)
\end{array}
$$

Power Signals

$$
\begin{aligned}
& R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y^{*}(t+\tau) d t=\int_{-\infty}^{+\infty} x(t-\tau) y^{*}(t) d t \\
& R_{x y}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) y^{*}(t+\tau) d t=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t-\tau) y^{*}(t) d t
\end{aligned}
$$

Both real

$$
\begin{aligned}
& R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t=\int_{-\infty}^{+\infty} x(t-\tau) y(t) d t \\
& R_{x y}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) y(t+\tau) d t=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t-\tau) y(t) d t \\
& R_{x y}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) y(t+\tau) d t \quad R_{x y}(\tau)=\frac{1}{T} \int_{T} x(t) y(t+\tau) d t
\end{aligned}
$$

Energy Signals

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t \quad R_{x y}(\tau)=\frac{1}{T} \int_{T} x(t) y(t+\tau) d t
$$

Autocorrelation

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t \quad R_{x y}(\tau)=\frac{1}{T} \int_{T} x(t) y(t+\tau) d t
$$

References

[1] http://en.wikipedia.org/
[2] M.J. Roberts, Signals and Systems,

