Complex Phase Factors (DFT.A1)

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

DFT

Discrete Fourier Transform

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \Leftrightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2 \pi / N) k n} \\
& W_{N} \triangleq e^{-j(2 \pi / N)} \\
& W_{N}^{n k} \triangleq e^{-j(2 \pi / N) n k}
\end{aligned}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \quad \Leftrightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}
$$

Complex Phase Factor

$$
\begin{gathered}
W_{N}^{+k N}=1 \\
W_{N}^{k \pm N}=W_{N}^{k}
\end{gathered}
$$

$$
W_{N}^{-k N}=1
$$

$$
W_{N}^{ \pm N}=e^{-j\left(\frac{2 \pi}{N}\right)(\pm N)}
$$

$$
W_{N}^{-k \pm N}=W_{N}^{-k}
$$

$$
W_{N}^{ \pm k \pm N}=W_{N}^{ \pm k} \cdot W_{N}^{ \pm N}
$$

Modular N System

$$
W_{N}^{n k} \triangleq e^{-j(2 \pi / N) n k}
$$

DFT Index (1)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

	$\mathrm{n}=0$	$\mathrm{n}=1$	$\mathrm{n}=2$	-	-	-	$\mathrm{n}=\mathrm{N}-1$
$\mathrm{k}=0$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 2$	-	-	-	$0 \cdot(N-1)$
$\mathrm{k}=1$	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 2$	\bullet	\bullet	-	$1 \cdot(N-1)$
$\mathrm{k}=2$	$2 \cdot 0$	$2 \cdot 1$	$2 \cdot 2$	-	-	-	$2 \cdot(N-1)$
-	-	-	-				-
-	\bullet	\bullet	\bullet				-
-	-	\bullet	\bullet				\bullet
$k=N-1$	$(\mathrm{N}-1) \cdot 0$	$(N-1) \cdot 1$	($\mathrm{N}-1$) 2	-	-	-	$(N-1) \cdot(N-1)$

A Multiplication Table in Modular N System

DFT Index (2)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

DFT Matrix

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

	$\mathrm{n}=0$	$\mathrm{n}=1$	$\mathrm{n}=2$	-			$\mathrm{n}=\mathrm{N}$-1		
$\mathrm{k}=0$		1	1	.0					$e^{-j(2 \pi / N) \cdot 0}$
$\mathrm{k}=1$		\square	\square	-			, \square		$e^{-j(2 \pi / N) \cdot 1}$
$\mathrm{k}=2$		\square	\square	$1{ }^{\circ}$			\square		$e^{-j(2 \pi / N) \cdot 2}$
-	-	-	-				-		
-	-	\bullet	\bullet				-		
-	-	\bullet	-				-		
$\mathrm{k}=\mathrm{N}-1$		\square	\square	-					$e^{-j(2 \pi / N)(N-1)}$

A Multiplication Table in Modular N System

Complex Phase Factor

Modular 4 System

$$
W_{4}^{3}=e^{-j \frac{2 \pi}{4} \cdot 3}
$$

Modular 8 System

Complex Phase Factor Symmetry

$$
W_{N}^{+k N}=1
$$

$$
W_{N}^{-k N}=1
$$

$$
W_{N}^{ \pm N}=e^{-j\left(\frac{2 \pi}{N}\right)(\pm N)}
$$

$$
W_{N}^{k \pm N}=W_{N}^{k}
$$

$$
W_{N}^{-k \pm N}=W_{N}^{-k}
$$

$$
W_{N}^{ \pm k \pm N}=W_{N}^{ \pm k} \cdot W_{N}^{ \pm N}
$$

$$
W_{N}^{N-k}=W_{N}^{-k}=\left\{W_{N}^{k}\right\}^{*}
$$

$$
e^{-j \frac{2 \pi}{N}(N-k)}=e^{j \frac{2 \pi}{N} k}=\left\{e^{-j \frac{2 \pi}{N} k}\right\}^{*}
$$

DFT Matrix Symmetry

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

