Fundamental Matrix Spaces (4A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & & a_{m n}
\end{array}\right) \\
& \text { ROW Space } \\
& \text { subspace of } R^{n} \\
& =\operatorname{span}\left\{\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}}, \cdots, \boldsymbol{r}_{\boldsymbol{m}}\right\} \\
& \text { COLUMN Space subspace of } R^{m} \\
& =\operatorname{span}\left\{\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \cdots, \boldsymbol{C}_{\boldsymbol{n}}\right\} \\
& \boldsymbol{c}_{\mathbf{1}} \quad \boldsymbol{c}_{\mathbf{2}} \quad \boldsymbol{c}_{\boldsymbol{n}} \quad \boldsymbol{c}_{\boldsymbol{i}} \in R^{m} \\
& \begin{array}{l}
\boldsymbol{r}_{\mathbf{1}}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right| \\
\boldsymbol{r}_{2}=\left|\begin{array}{cccc}
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right| \\
\boldsymbol{r}_{\boldsymbol{m}}=\mid
\end{array} \\
& r_{i} \in R^{n} \\
& n
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & \\
\vdots & \vdots & & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & \\
a_{m n}
\end{array}\right) \\
& \text { ROW Space } \\
& \text { subspace of } R^{n} \\
& =\operatorname{span}\left\{\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}}, \cdots, \boldsymbol{r}_{\boldsymbol{m}}\right\} \\
& =\{\boldsymbol{w}\} \\
& \begin{array}{l}
r_{i} \in R^{n} \\
r_{1}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{2}= \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right| \\
\qquad
\end{array} \\
& \boldsymbol{w}=k_{1} \boldsymbol{r}_{1}+k_{2} \boldsymbol{r}_{2}+\cdots+k_{m} \boldsymbol{r}_{\boldsymbol{m}} \\
& =k_{1}\left|\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right| \\
& +k_{2}\left|\begin{array}{llll}
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right| \\
& \left.+k_{m} \left\lvert\, \begin{array}{cccc}
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right.\right)
\end{aligned}
$$

Column Spaces

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & \\
& & a_{1 n} \\
a_{21} & a_{22} & \cdots & \\
\vdots & \vdots & & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & \\
a_{m n}
\end{array}\right) \\
& \text { COLUMN Space subspace of } R^{m} \\
& =\operatorname{span}\left\{\boldsymbol{C}_{1}, \boldsymbol{C}_{\mathbf{2}}, \cdots, \boldsymbol{C}_{\boldsymbol{n}}\right\} \\
& =\{\boldsymbol{w}\} \\
& \boldsymbol{w}=k_{1} \boldsymbol{C}_{\mathbf{1}}+k_{2} \boldsymbol{C}_{\mathbf{2}}+\cdots+k_{n} \boldsymbol{C}_{\boldsymbol{n}} \\
& \boldsymbol{c}_{\boldsymbol{i}} \in R^{m} \boldsymbol{c}_{\mathbf{1}} \quad \boldsymbol{c}_{\boldsymbol{2}} \quad \boldsymbol{c}_{\boldsymbol{n}} \\
& \boldsymbol{m} \stackrel{\wedge}{\wedge}\left(\begin{array}{c|c|c|c}
a_{11} \\
a_{21} \\
\vdots & a_{12} & \cdots & a_{1 n} \\
a_{m 1}
\end{array}\right) \\
& =k_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+k_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right) \cdots+k_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{aligned}
$$

Null Space

$$
\begin{aligned}
& \boldsymbol{m}\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)\left\|\boldsymbol{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)\right\|_{\nabla} \boldsymbol{n} \quad \text { sulL Space } \quad \text { subspace of } R^{n} \\
& =\left(\begin{array}{cccc}
a_{11} x_{1}+ & a_{12} x_{2}+ & \cdots & a_{1 n} x_{n} \\
a_{21} x_{1}+ & a_{22} x_{2}+ & \cdots & a_{2 n} x_{n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+ & \cdots & a_{m n} x_{n}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right) \cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right) \\
& \text { Ax }=x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=0 \\
& A x=0 \\
& A x=x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=b \\
& \boldsymbol{A x}=\boldsymbol{b}
\end{aligned}
$$

Null Space

NULL Space subspace of R^{n}
solution space $\quad A x=0$
Invertible A
$x=A^{-1} 0=0$
only trivial solution
Non-invertible A zero row(s) in a RREF free variables parameters s, t, u, \ldots
A^{-1}

one	one
two	two
three	three

Solution Space of $\mathbf{A x}=\mathbf{b}$ (1)

	0	0		0		0	3	-1	1	-5		4
0	1	2		0			-4	2	0	0	0	0
0	0	0		1	0	0	0	0	0	0	0	0
$0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1$ $1\left(x_{1}+3 \cdot x_{3}=-1\right.$ $1\left(x_{1}\right)-5 \cdot x_{2}+1 \cdot x_{3}=4$ $1\left(x_{2}\right)-4 \cdot x_{3}=2$												

Solve for a leading variable

$$
\begin{array}{ll}
x_{1}=-1-3 \cdot x_{3} & x_{1}=4+5 \cdot x_{2}-1 \cdot x_{3} \\
x_{2}=2+4 \cdot x_{3} &
\end{array}
$$

Treat a free variable as a parameter

$$
x_{3}=t
$$

$$
x_{2}=s \quad x_{3}=t
$$

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

$$
\begin{aligned}
& x_{1}=4+5 s-1 t \\
& x_{2}=s \\
& x_{3}=t
\end{aligned}
$$

Solution Space of $\mathbf{A x}=\mathbf{b}$ (2)

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t \quad \text { free variable }
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}=4+5 s-1 t \\
x_{2}=s \quad \text { free variable } \\
x_{3}=t \quad \text { free variable }
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

infinitely many solutions

infinitely many solutions

Solution Space of $\mathbf{A x}=\mathbf{b}$ (3)

$\left[\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left(\begin{array}{ccc|c}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0 \\
\hline
\end{array}\right)
$$

$\left(\begin{array}{ccc|c}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]
$$

General
Solution of
Ax $=b$

Particular General
Solution of Solution of
$\boldsymbol{A x}=\boldsymbol{b} \quad \boldsymbol{A x}=0$

$$
\left\{\begin{array}{l}
x_{1}=4+5 s-1 t \\
x_{2}=s \\
x_{3}=t
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Particular General
Solution of Solution of
$\boldsymbol{A x}=\boldsymbol{b} \quad \boldsymbol{A x}=\mathbf{0}$

Linear System \& Inner Product (1)

Linear Equations

Corresponding Homogeneous Equation

$$
\begin{aligned}
& \boldsymbol{a}=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \\
& \boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} & =0 \\
\text { normal vector } \quad \boldsymbol{a} \cdot \boldsymbol{x} & =b \\
-\boldsymbol{a} \cdot \boldsymbol{x} & =0
\end{aligned}
$$

each solution vector \boldsymbol{x} of a homogeneous equation orthogonal to the coefficient vector \boldsymbol{a}

Homogeneous Linear System

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 & \boldsymbol{r}_{1} \cdot \boldsymbol{x}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 & \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0 \\
\cdots \cdots \cdots & \cdots \\
\cdots \cdots a_{m n} x_{n}=0 & \boldsymbol{r}_{\boldsymbol{m}} \cdot \boldsymbol{x}=0
\end{array}
$$

Linear System \& Inner Product (2)

Homogeneous Linear System

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 & \boldsymbol{r}_{1} \cdot \boldsymbol{x}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 & \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0 \\
\cdots \cdots \cdots & \cdots \\
\cdots \cdots+a_{m n} x_{n}=0 & \boldsymbol{r}_{\boldsymbol{m}} \cdot \boldsymbol{x}=0
\end{array}
$$

Homogeneous Linear System $\quad \boldsymbol{A} \cdot \boldsymbol{x}=\mathbf{0} \quad \boldsymbol{A}: m \times n$
solution set consists of all vectors in R^{n}
that are orthogonal to every row vector of \boldsymbol{A}

Linear System \& Inner Product (3)

Non-Homogeneous Linear System
Homogeneous Linear System

$$
\begin{array}{rlr}
\boldsymbol{A} \cdot \boldsymbol{x} & =\boldsymbol{b} & \boldsymbol{A}: m \times n \\
& \boldsymbol{A} \cdot \boldsymbol{x} & =\mathbf{0}
\end{array}
$$

solution set consists of all vectors in R^{n} that are orthogonal to every row vector of \boldsymbol{A}
$+$
a particular solution $\quad \boldsymbol{x}_{0} \quad \boldsymbol{A} \cdot \boldsymbol{x}_{0}=\boldsymbol{b}$
R^{3}

χ

Linear System \& Inner Product (4)

$\left(\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad\left[\begin{array}{lll|l}1 & 0 & 3 & -1 \\ 0 & 1 & -4 & 2 \\ 0 & 0 & 0 & 0\end{array}\right] \quad\left(\begin{array}{lll|l}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

2

$$
\begin{aligned}
& \boldsymbol{r}_{\mathbf{1}} \cdot \boldsymbol{x}=0 \\
& \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0
\end{aligned}
$$

3
1 a line through the origin R^{1}

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

$$
r_{1} \cdot \boldsymbol{x}=0
$$

1

2 a plane through the origin R^{2}

$$
\left\{\begin{array}{l}
x_{1}=4+5 s-1 t \\
x_{2}=s \\
x_{3}=t
\end{array}\right.
$$

Consistent Linear System $\mathbf{A x}=\mathbf{b}$

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
\\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+ & \cdots & a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+ & \cdots & a_{2 n} x_{n} \\
\vdots & \vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+ & \cdots & a_{m n} x_{n}
\end{array}\right)
$$

$\boldsymbol{A x}=\boldsymbol{b} \quad$ consistent $\quad \Rightarrow$
$x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=b$
expressed in linear combination of column vectors
$\Rightarrow \boldsymbol{b}$ is in the column space of \boldsymbol{A}
$=x_{1}\left(\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right)+x_{2}\left(\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right) \ldots+x_{n}\left(\begin{array}{c}a_{1 n} \\ a_{2 n} \\ \vdots \\ a_{m n}\end{array}\right)$

$$
A x=x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=b
$$

Rank and Nullity

$\operatorname{dim}($ row space of $A)=\operatorname{dim}($ column space of $A)=\operatorname{rank}(A)$ $\operatorname{dim}($ null space of $A)=$ nullity (A)

Solution Space of $\mathbf{A x}=\mathbf{0}$

Elementary Row Operation (1)

ROW Space \quad subspace of R^{n}
$=\operatorname{span}\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots, \boldsymbol{r}_{\boldsymbol{m}}\right\}$
COLUMN Space \quad subspace of R^{m}
$=\operatorname{span}\left\{\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \cdots, \boldsymbol{C}_{\boldsymbol{n}}\right\}$

```
NULL Space subspace of }\mp@subsup{R}{}{n
    solution space }\quadAx=
    free variables parameters s,t,u,\ldots
```

Elementary row operations do not change the null space of a matrix
Elementary row operations do not change the row space of a matrix
Elementary row operations do change the col space of a matrix
Elementary row operations do not change the linear dependence and linear independence relationship among column vectors

Elementary Row Operation (2)

Elementary row operations do not change the null space of a matrix Elementary row operations do not change the row space of a matrix Elementary row operations do not change the linear dependence and linear independence relationship among column vectors

Elementary row operations do change the col space of a matrix
A

1	0		0		0	0	0		0
0	1		0		0	0	0		0
0	0	0	1		0	0	0		
0	0	0	0	0	1	0	0		0
0	0	0	0	0	0	1	0		
0	0	0	0	0	0	0	1		
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Elementary Row Operation (3)

Elementary row operations

- do not change the null space of a matrix
- do not change the row space of a matrix
- do not change the linear dependence and linear independence relationship among column vectors
- do change the col space of a matrix

Bases of Row \& Column Spaces (1)

basis of	
row space	$=$
of \mathbf{A}	basis of
row space	
of \mathbf{R}	

basis of
col space
of \mathbf{A}
:---
col space

of \mathbf{R}
the corresponding set of column vectors
$\operatorname{dim}($ row space of $A)=\operatorname{dim}($ column space of $A)=\operatorname{rank}(A)$

Bases of Row \& Column Spaces (2)

the basis consisting of columns of \mathbf{A}

the basis consisting of rows of A

Bases of Row \& Column Spaces (3)

basis of col space of \mathbf{R}
the basis consisting of rows of \mathbf{A}

the basis consisting of columns of \mathbf{A}

General Solution of $\mathbf{A x}=\mathbf{b}$ (1)

Non-Homogeneous Linear System	$\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}$	
Homogeneous Linear System	$\boldsymbol{A} \cdot \boldsymbol{x}=\mathbf{0}$	$\boldsymbol{A}: m \times n$

a particular solution

$$
A \cdot \boldsymbol{x}=\boldsymbol{b}
$$

solution set consists of all vectors in R^{n}
that are orthogonal to every row vector of \boldsymbol{A}
$+$
a particular solution $\quad \boldsymbol{x}_{0} \quad \boldsymbol{A} \cdot \boldsymbol{x}_{\mathbf{0}}=\boldsymbol{b}$

The general solution of a consistent linear system can be written as
the sum of a particular solution of $A x=b$ and the general solution of $A x=0$

General Solution of $\mathbf{A x}=\mathbf{b}$ (2)

Any solution of a consistent linear system $\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}$
A basis for the null space (solution space $\mathbf{A} \cdot \boldsymbol{x}=\mathbf{0}$)

$$
\begin{aligned}
& \boldsymbol{x}_{\mathbf{0}} \\
& S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{\boldsymbol{k}}\right\}
\end{aligned}
$$

Every solution of $\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}$
in the form $\quad \boldsymbol{x}=\boldsymbol{x}_{\mathbf{0}}+C_{1} \boldsymbol{v}_{\mathbf{1}}+C_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots, C_{1} \boldsymbol{v}_{\boldsymbol{k}}$
\boldsymbol{x} is a solution of $\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}$

$$
\begin{aligned}
\boldsymbol{x}= & \boldsymbol{x}_{\mathbf{0}}+C_{1} \boldsymbol{v}_{\mathbf{1}}+C_{2} \boldsymbol{v}_{\mathbf{2}}+\cdots+C_{k} \boldsymbol{v}_{\boldsymbol{k}} \\
& \text { for all choices of scalars } C_{1}, C_{2}, \cdots C_{k}
\end{aligned}
$$

The general solution of a consistent linear system can be written as
the sum of a particular solution of $A x=b$ and the general solution of $A x=0$

Rank and Nullity (1)

\# of zero rows = \# of free var's

$$
\begin{aligned}
& \mathrm{m}=\text { (\# of leading variables) + (\# of zero rows) } \\
& \mathrm{n}=\text { (\# of leading variables) }+ \text { (\# of free variables })
\end{aligned}
$$

Rank and Nullity (2)

Overdetermined System

Overdetermined System Example

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
1 & 0 & \mathrm{~b} 1 \\
0 & 1 & \mathrm{~b} 2 \\
0 & 0 & \mathrm{~b} 3
\end{array}\right] \quad \begin{array}{l}
\begin{array}{l}
\text { Overdetermined } \mathbf{A b}=\mathbf{b} \\
\text { may be consistent or inconsistent } \\
\text { depending on } \mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b}
\end{array} \\
\mathrm{~b} 3=0 \quad \underline{\text { consistent }} \quad \text { unique solution }
\end{array}} \\
& \left(\begin{array}{ll|l}
1 \begin{array}{ll}
1 & 0 \\
\mathrm{c} 1 \\
0 & 1
\end{array} & \mathrm{c} 2 \\
0 & 0 & \mathrm{c} 3 \\
0 & 0 & \mathrm{c} 4 \\
0 & 0 & \mathrm{c} 5
\end{array}\right. \\
& \mathrm{n}=2 \quad \mathrm{r}=2 \\
& \# \text { of parameters }=\mathrm{n}-\mathrm{r}=0 \quad \text { unique } \\
& \mathrm{c} 3=0 \& \mathrm{c} 4=0 \& \mathrm{c} 5=0
\end{aligned}
$$

Underdetermined System

> Ab = b
> inconsistent
> consistent but infinitely many solutions

A
$\operatorname{rank}(\mathrm{A})=r \leq m$
n - r parameters
n - m > 0 parameters
at least one parameter
\Rightarrow infinitely many solutions

Fundamental Matrix Spaces (1)

Fundamental Matrix Spaces (2)

Fundamental Matrix
Spaces (4A)

Orthogonal Complement

$$
m=\operatorname{rank}(A)+\operatorname{nullity}\left(A^{\top}\right)
$$

W a subspace of R^{n}

The orthogonal complement of W

```
W
```

$W^{\perp} \quad$ a subspace of R^{n}
$W^{\perp} \cap W=\{\mathbf{0}\}$
The orthogonal complement of W The orthogonal complement of W^{\perp}

The set of all vectors in R^{n} that are orthogonal to every vector in W

Fundamental Matrix Spaces (3)

The orthogonal complements

$$
\begin{array}{lll}
\operatorname{row}(\mathrm{A}) & \perp & \operatorname{null}(\mathrm{A}) \\
\operatorname{row}\left(\mathrm{A}^{\top}\right) & \perp & \operatorname{null}\left(\mathrm{A}^{\top}\right)
\end{array}
$$

$$
\operatorname{col}(\mathrm{A}) \quad \perp \quad \operatorname{null}\left(\mathrm{A}^{\top}\right)
$$

A nxn Matrix A

1. A is invertible
2. $\mathbf{A x}=\mathbf{0}$ has only the trivial solution
3. $\operatorname{The} \operatorname{RREF}(A)=I_{n}$
4. A can be written as a product of elementary matrix
5. $\mathbf{A x}=\mathbf{b}$ is consistent for every $\mathrm{n} \times 1 \mathbf{b}$
6. $\mathbf{A x}=\mathbf{b}$ has exactly one solution for every $\mathrm{n} \times 1 \mathbf{b}$
7. $\operatorname{det}(\mathbf{A}) \neq 0$
8. The column vectors are linearly independent
9. The row vectors are linearly independent
10. The column vectors span R^{n}
11. The row vectors span R^{n}
12. The column vectors form a basis for R^{n}
13. The row vectors form a basis for R^{n}
14. $\operatorname{rank}(\mathbf{A})=n$
15. $\operatorname{nullity}(\mathbf{A})=0$
16. The orthogonal complement of the null space is R^{n}
17. The orthogonal complement of the row space is $\{\mathbf{0}\}$

References

[1] http://en.wikipedia.org/
[2] Anton, et al., Elementary Linear Algebra, 10 ${ }^{\text {th }}$ ed, Wiley, 2011
[3] Anton, et al., Contemporary Linear Algebra,

