Minimum Phase (2A)

Copyright (c) 2011 Young W. Lim.			
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".			
Please send corrections (or suggestions) to youngwlim@hotmail.com.			
This document was produced by using OpenOffice and Octave.			

Properties of a Minimum Phase System

Lowest Time Delay

Group Delay

Energy Compaction

Invertible

Min Phase Filter

flat response correct phase response

Equalizer

flat response incorrect phase response

Minimum Phase System

Stable Causal System

All its poles are in the left half of the s plane

Minimum Phase System

All poles

All zeros

Maximum Phase System

All poles

All zeros

Mixed Phase System

All poles

some zeros

some zeros

Minimum Phase System Properties (1)

Minimum Phase System

Amplitude Response is known

Minimum Phase Response can be computed

$$A(\omega) = |H(j\omega)|$$
 $0 \le \omega < \infty$

$$0 \le \omega < \infty$$

$$\Phi_{\min}(\omega) = \arg\{H(j\omega)\}$$

Non-Minimum Phase System

Amplitude Response is known

Phase Response always greater

Poles / Zeros in the right half s plane

$$A(\omega) = |H(j\omega)|$$
 $0 \le \omega < \infty$

$$0 \leq \omega < \alpha$$

$$\Phi(\omega) \geq \Phi_{min}(\omega)$$

Minimum Phase System Properties (2)

Minimum Phase System

Non-Minimum Phase System

Phase Response $\Phi(\omega)$ can be unambiguously determined from the amplitude response $A(\omega)$

Not valid

Verification of a Minimum Phase System

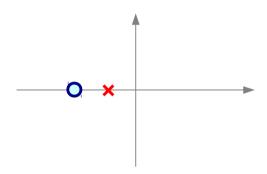
Check the progression of $\Phi(\omega)$ and $A(\omega)$ at high frequency

$$H(\omega) = \frac{N(s)}{D(s)}$$
 order n

Minimum Phase System

$$\Phi(\omega) = -90^{\circ} (n-m)$$

Minimum Phase System Non-Minimum

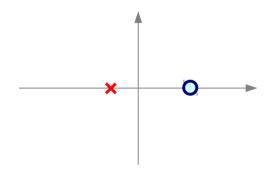


$$-20(n-m)dB$$
 / decade

Example

Minimum Phase System

$$H(s) = \frac{1+2s}{1+4s}$$


$$\frac{1+j2\omega}{1+j4\omega} = \frac{1+j2\omega}{1+j4\omega} \cdot \frac{1-j4\omega}{1-j4\omega}$$

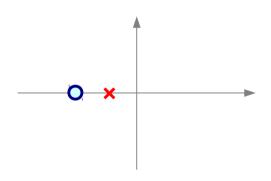
$$=\frac{\left(1+8\,\omega^2\right)\,-\,j2\,\omega}{1+16\,\omega^2}$$

$$\Phi(\omega) = -\tan^{-1}\left(\frac{2\omega}{1+8\omega^2}\right)$$

Non-Minimum Phase System

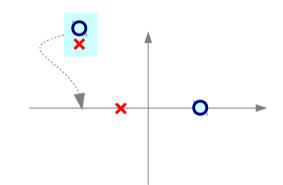
$$H(s) = \frac{1-2s}{1+4s}$$

$$\frac{1-j2\omega}{1+j4\omega} = \frac{1-j2\omega}{1+j4\omega} \cdot \frac{1-j4\omega}{1-j4\omega}$$


$$= \frac{(1 - 8\omega^2) - j6\omega}{1 + 16\omega^2}$$

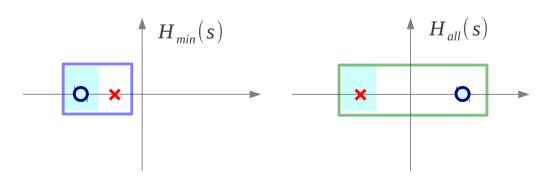
$$\Phi(\omega) = -\tan^{-1} \left(\frac{6\omega}{1 + 8\omega^2} \right)$$

Non-minimum Phase System


Minimum Phase System

$$H(s) = \frac{1+2s}{1+4s}$$

Non-Minimum Phase System


$$H(s) = \frac{1-2s}{1+4s} = \frac{1-2s}{1+4s} \cdot \frac{1+2s}{1+2s}$$

$$H(s) = \frac{1-2s}{1+4s} \cdot \frac{1+2s}{1+2s}$$

$$= \frac{1+2s}{1+4s} \cdot \frac{1-2s}{1+2s}$$

$$= H_{min}(s) \cdot H_{all}(s)$$

A non-minimum phase system can always be decomposed into $H_{min}(s) \cdot H_{all}(s)$

8

All Pass Filter (1)

$$H_{all}(s) = \frac{1-2s}{1+2s}$$

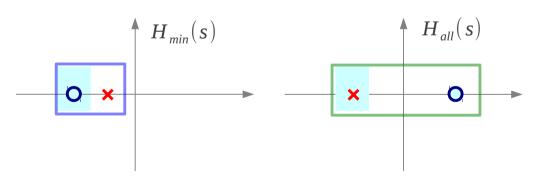
Flat Magnitude

$$\left| \frac{1 - j2\omega}{1 + j2\omega} \right| = \frac{\left| 1 - j2\omega \right|}{\left| 1 + j2\omega \right|}$$
$$= \frac{\sqrt{1 + 4\omega^2}}{\sqrt{1 + 4\omega^2}} = 1$$

$$|H_{all}(j\omega)| = \frac{1 + 4\omega^2}{1 + 4\omega^2} = 1$$

A Pure Phase Shifter

$$\left| \frac{1 - j2\omega}{1 + j2\omega} \right| = \frac{\left| 1 - j2\omega \right|}{\left| 1 + j2\omega \right|} \qquad \frac{1 - j2\omega}{1 + j2\omega} = \frac{1 - j2\omega}{1 + j2\omega} \cdot \frac{1 - j2\omega}{1 - j2\omega}$$
$$= \frac{\sqrt{1 + 4\omega^2}}{\sqrt{1 + 4\omega^2}} = 1 \qquad = \frac{(1 - 4\omega^2) - j4\omega}{1 + 4\omega^2}$$

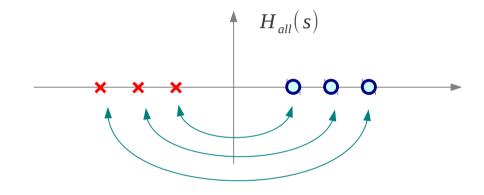

$$|H_{all}(j\omega)| = \frac{1+4\omega^2}{1+4\omega^2} = 1$$
 $arg\{H_{all}(j\omega)\} = -\tan^{-1}\left(\frac{4\omega}{1-4\omega^2}\right)$

9

$$H(s) = \frac{1-2s}{1+4s} \cdot \frac{1+2s}{1+2s}$$

$$= \frac{1+2s}{1+4s} \cdot \frac{1-2s}{1+2s}$$

$$= H_{min}(s) \cdot H_{all}(s)$$


A non-minimum phase system can always be decomposed into $H_{min}(s) \cdot H_{all}(s)$

All Pass Filter (2)

$$G_{all}(s) = \pm \frac{(s - \bar{s_1})(s - \bar{s_2}) \cdots (s - \bar{s_n})}{(s - s_1)(s - s_2) \cdots (s - s_n)}$$

Flat Magnitude
A Pure Phase Shifter

All Pass Filter (3)

$$H_{all}(s) = \frac{s - 0.5}{s + 0.5}$$
$$= \frac{s + 0.5 - 1}{s + 0.5}$$

$$H(s) = 1 - \frac{2}{(s+0.5)}$$

Inverse Laplace Transform

$$h(t) = \delta(t) - e^{-0.5t}$$

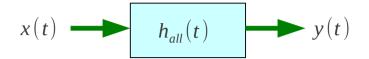
$$H_{all}(j\omega) = \frac{j\omega - 0.5}{j\omega + 0.5}$$

Flat Magnitude

$$|H_{all}(j\omega)| = \frac{\sqrt{\omega^2 + 0.25}}{\sqrt{\omega^2 + 0.25}} = 1$$

Phase Shifter

$$arg\{H_{all}(j\omega)\} = -2 \tan^{-1}\left(\frac{\omega}{0.5}\right)$$

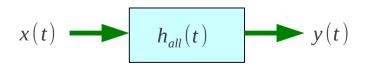

Group Delay

$$-\frac{d}{d\omega} \left(arg \left\{ H_{all}(j\omega) \right\} \right)$$

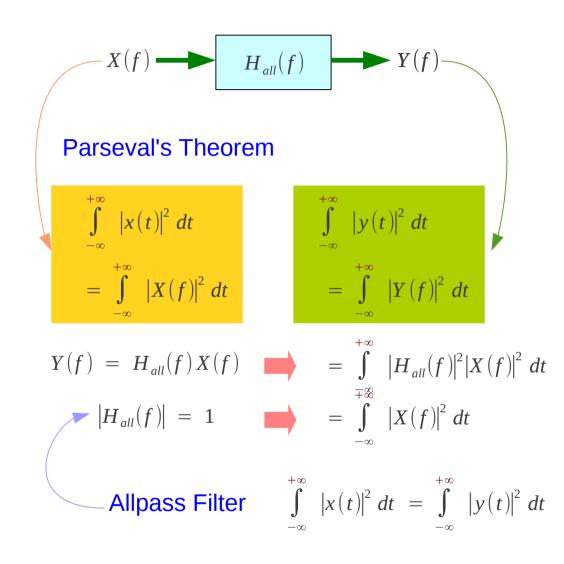
$$= -\frac{d}{d\omega} \left(-2 \tan^{-1} \left(\frac{\omega}{0.5} \right) \right)$$

$$= \frac{4}{(1+\omega^2/0.25)} > 0$$

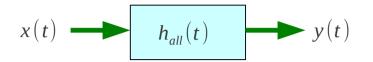
All Pass Filter (4)



Parseval's Theorem

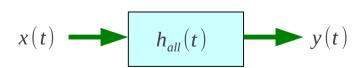

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |y(t)|^2 dt$$

Energy Compaction


$$\int_{-\infty}^{t_0} |x(t)|^2 dt \ge \int_{-\infty}^{t_0} |y(t)|^2 dt$$

The <u>energy build-up</u> in the input is more **rapid** than in the output

All Pass Filter (5)



Parseval's Theorem

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |y(t)|^2 dt$$

Energy Compaction

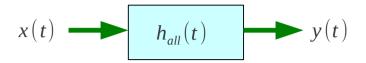
$$\int_{-\infty}^{t_0} |x(t)|^2 dt \ge \int_{-\infty}^{t_0} |y(t)|^2 dt$$

The <u>energy build-up</u> in the input is more **rapid** than in the output

Truncated input

$$x_{1}(t) = \begin{cases} x(t) & (t \leq t_{0}) \\ 0 & (t > t_{0}) \end{cases}$$

For
$$t \leq t_0$$
 \Rightarrow $x_1(t) = x(t)$ \Rightarrow $y_1(t) = \int_0^{t_0} h(t-\tau)x_1(\tau)d\tau = \int_0^t h(t-\tau)x(\tau)d\tau = y(t)$

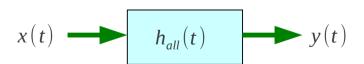

$$\int_{-\infty}^{+\infty} |x_1(t)|^2 dt = \int_{-\infty}^{+\infty} |y_1(t)|^2 dt$$

For
$$t > t_0$$
 $\longrightarrow x_1(t) = 0$

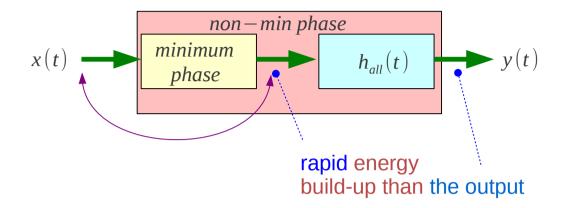
$$\int_{-\infty}^{t_0} |x_1(t)|^2 dt = \int_{-\infty}^{+\infty} |y_1(t)|^2 dt = \int_{-\infty}^{t_0} |y_1(t)|^2 dt + \int_{t_0}^{+\infty} |y_1(t)|^2 dt$$

$$\int_{-\infty}^{t_0} |x(t)|^2 dt \ge \int_{-\infty}^{t_0} |y(t)|^2 dt \quad For \quad t \le t_0$$

All Pass Filter (6)



Parseval's Theorem


$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |y(t)|^2 dt$$

Energy Compaction

$$\int_{-\infty}^{t_0} |x(t)|^2 dt \geq \int_{-\infty}^{t_0} |y(t)|^2 dt$$

The <u>energy build-up</u> in the input is more **rapid** than in the output

The signal energy until t_0 of the minimum phase

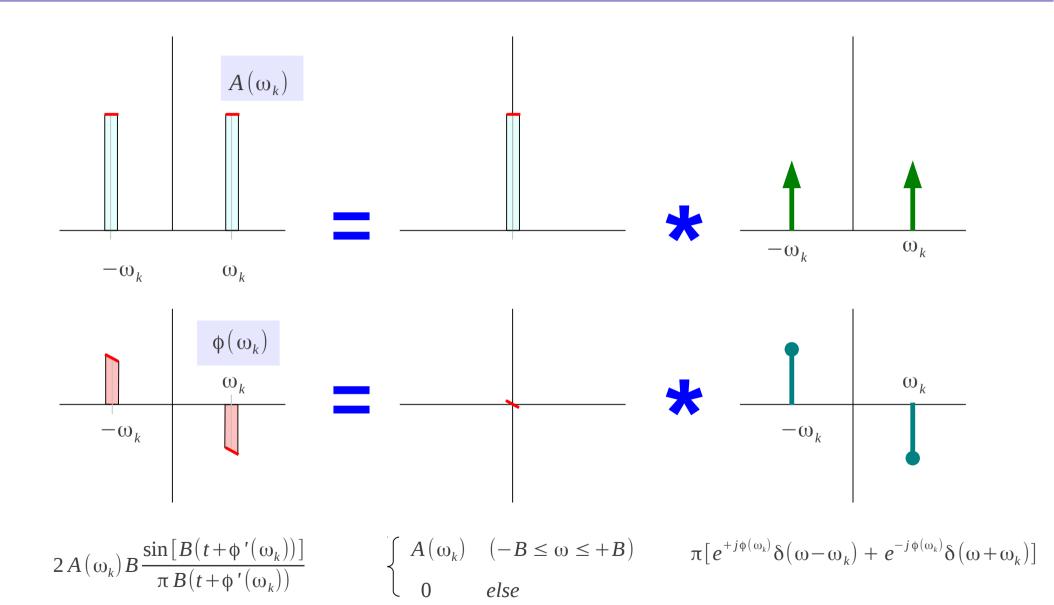
any other causal signal with the same magnitude response

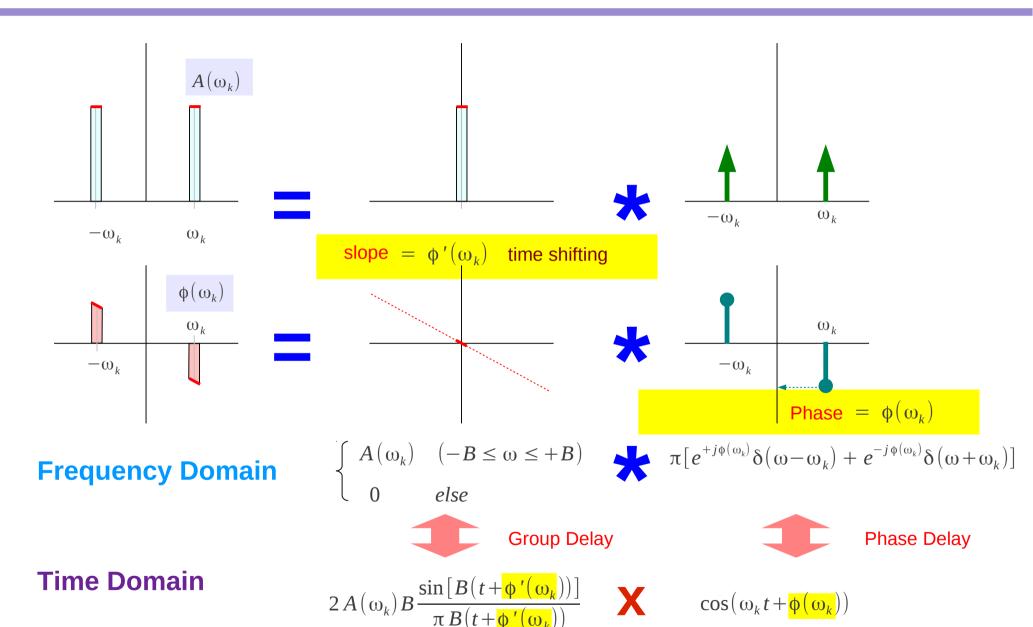
Thus minimum phase signals

maximally concentrated toward time 0
when compared against all causal signals
having the same magnitude response

minimum phase signals

minimum delay signals





Simple LPF - Approximation (2)

Simple LPF - Approximation (3)

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] http://www.libinst.com/tpfd.htm
- [4] K.Shin, J.K. Hammond, "Fundamentals of Signal Processing for Sound and Vibration Engineers"
- [5] www.radiolab.com.au/DesignFile/DN004.pdf