Downsampling (4B)

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Band-limited Signal

Sampling Frequency f_{s}
Sampling Time $\quad T=\frac{1}{f_{s}}$

DOWN

T

Sampling Frequency $\quad f_{s}^{\prime}=\frac{1}{4} f_{s}$
Sampling Time

$$
T^{\prime}=\frac{4}{f_{s}}
$$

Time Sequence

$$
x_{d}[n]
$$

Ideal
Sampling

$y[n]$ Time Sequence

Normalized Radian Frequency

$$
\hat{\omega}=\omega \cdot T_{s}=\frac{\omega}{1 / T_{s}}
$$

$$
\hat{\omega}=\frac{\omega}{f_{s}}=2 \pi \frac{f}{f_{s}}
$$

Normalized to f_{s}
Normalized Radian Frequency
$y[n]$ Time Sequence $\quad f_{H}$

|】 The Same Time Sequence

$$
y[n] \text { Time Sequence } \quad 4 f_{H}
$$

The Same Normalized Radian Frequency

The Highest Frequency: $f_{H}, \quad 4 f_{H}$

$$
\frac{f_{H}}{1 / 4 T}=f_{H} \cdot 4 T \quad \frac{4 f_{H}}{1 / T}=f_{H} \cdot 4 T
$$

Time Sequence

$y[n]$ Time Sequence

Time Sequence Spectrum in Linear Frequency

$y[n]$ Time Sequence

\| The Same Time Sequence
$y[n]$ Time Sequence

f_{H} High Freq

f_{H} High Freq

Time Sequence Spectrum in Normalized Frequency

$y[n]$ Time Sequence

\| The Same Time Sequence
$y[n]$ Time Sequence

Measuring Rotation Rate

Signals with Harmonic Frequencies (1)

$\cos (1 \cdot 2 \pi t)=\frac{e^{+j(1 \cdot 2 \pi) t}+e^{-j(1 \cdot 2 \pi) t}}{2}$
$\cos (2 \cdot 2 \pi t)=\frac{e^{+j(2 \cdot 2 \pi) t}+e^{-j(2 \cdot 2 \pi) t}}{2}$
$\cos (3 \cdot 2 \pi t)=\frac{e^{+j(3 \cdot 2 \pi) t}+e^{-j(3 \cdot 2 \pi) t}}{2}$
$\cos (4 \cdot 2 \pi t)=\frac{e^{+j(4 \cdot 2 \pi) t}+e^{-j(4 \cdot 2 \pi) t}}{2}$
$\cos (5 \cdot 2 \pi t)=\frac{e^{+j(5 \cdot 2 \pi) t}+e^{-j(5 \cdot 2 \pi) t}}{2}$
$\cos (6 \cdot 2 \pi t)=\frac{e^{+j(6 \cdot 2 \pi) t}+e^{-j(6 \cdot 2 \pi) t}}{2}$
$\cos (7 \cdot 2 \pi t)=\frac{e^{+j(7 \cdot 2 \pi) t}+e^{-j(7 \cdot 2 \pi) t}}{2}$

Signals with Harmonic Frequencies (2)

$<\prod_{-14 \pi}|\quad| \quad|\quad|>$

Sampling Frequency

Nyquist Frequency

Aliasing

Sampling

$$
\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})
$$

$$
\begin{array}{ll}
\omega_{1}=2 \pi f_{1} & \omega_{2}=2 \pi f_{2} \\
\omega_{1}=\frac{\omega_{s}}{2}(\mathrm{rad} / \mathrm{sec}) & \omega_{2}=-\frac{\omega_{s}}{2}(\mathrm{rad} / \mathrm{sec}) \\
f_{1}=\frac{f_{s}}{2}(\mathrm{rad} / \mathrm{sec}) & f_{2}=-\frac{f_{s}}{2}(\mathrm{rad} / \mathrm{sec})
\end{array}
$$

$$
2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
\pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
-\pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

Sampling

$$
\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})
$$

For the period of T_{s}

$$
2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec}) \quad \frac{\pi}{2}(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
\text { Angular displacement } \quad \frac{\pi}{2}(\mathrm{rad})
$$

$$
\begin{aligned}
\hat{\omega} & =\omega \cdot T_{s}(\mathrm{rad}) \\
& =2 \pi f_{1} \cdot T_{s}(\mathrm{rad}) \\
& =2 \pi \frac{f_{s}}{4} \cdot T_{s}(\mathrm{rad}) \\
& =\frac{\pi}{2}(\mathrm{rad})
\end{aligned}
$$

Angular Frequencies in Sampling

continuous-time signals

Signal Frequency

$$
f_{0}=\frac{1}{T_{0}}
$$

Signal Angular Frequency

$$
\omega_{0}=2 \pi f_{0}(\mathrm{rad} / \mathrm{sec})
$$

sampling sequence

Sampling Frequency

$$
f_{s}=\frac{1}{T_{s}}
$$

For 1
secən $2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})$

For 1
Pevblartioh $T_{0}(\mathrm{sec})$

For 1 revbluatioh $T_{s}(\mathrm{sec})$

Sampling Angular Frequency

$$
\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

