Downsampling (4B)

•

•

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Band-limited Signal

Sampling Frequency

 f_s

Sampling Time

$$T = \frac{1}{f_s}$$

Sampling Frequency

$$f'_{s} = \frac{1}{4}f_{s}$$

Sampling Time

$$T' = \frac{4}{f_s}$$

Time Sequence

Normalized Radian Frequency

$$\hat{\omega} = \omega \cdot T_s = \frac{\omega}{1/T_s}$$

$$\hat{\omega} = \frac{\omega}{f_s} = 2\pi \frac{f}{f_s}$$

Normalized to f_s

Normalized Radian Frequency

The Same Time Sequence

The Same Normalized Radian Frequency

The Highest Frequency: f_H , $4f_H$

$$\frac{f_H}{1/4T} = f_H \cdot 4T \qquad \frac{4f_H}{1/T} = f_H \cdot 4T$$

Time Sequence

Time Sequence Spectrum in Linear Frequency

Time Sequence Spectrum in Normalized Frequency

Measuring Rotation Rate

Signals with Harmonic Frequencies (1)

1 cvcle / sec

2 Hz

2 cycles / sec

3 Hz

3 cycles / sec

4 Hz

4 cycles / sec

5 Hz

5 cycles / sec

6 Hz

6 cycles / sec

7 Hz

7 cycles / sec

$$\cos (1.2 \pi t) = \frac{e^{+j(1.2\pi)t} + e^{-j(1.2\pi)t}}{2}$$

$$\cos (2 \cdot 2\pi t) = \frac{e^{+j(2 \cdot 2\pi)t} + e^{-j(2 \cdot 2\pi)t}}{2}$$

$$\cos (3 \cdot 2\pi t) = \frac{e^{+j(3 \cdot 2\pi)t} + e^{-j(3 \cdot 2\pi)t}}{2}$$

$$\cos (4 \cdot 2 \pi t) = \frac{e^{+j(4 \cdot 2\pi)t} + e^{-j(4 \cdot 2\pi)t}}{2}$$

$$\cos (5.2 \pi t) = \frac{e^{+j(5.2\pi)t} + e^{-j(5.2\pi)t}}{2}$$

$$\cos (6.2\pi t) = \frac{e^{+j(6.2\pi)t} + e^{-j(6.2\pi)t}}{2}$$

$$\cos (7.2 \pi t) = \frac{e^{+j(7.2\pi)t} + e^{-j(7.2\pi)t}}{2}$$

Signals with Harmonic Frequencies (2)

Sampling Frequency

Nyquist Frequency

Aliasing

Sampling

$$\omega_s = 2\pi f_s (rad/sec)$$

$$\omega_1 = 2\pi f_1$$

$$\omega_1 = \frac{\omega_s}{2} \ (rad/sec)$$

$$f_1 = \frac{f_s}{2} \ (rad/sec)$$

$$2\pi (rad) / T_s(sec)$$

$$\pi$$
 (rad) / T_s (sec)

$$\omega_2 = 2\pi f_2$$

$$\omega_1 = \frac{\omega_s}{2} \ (rad/sec)$$
 $\omega_2 = -\frac{\omega_s}{2} \ (rad/sec)$

$$f_1 = \frac{f_s}{2} \ (rad/sec)$$
 $f_2 = -\frac{f_s}{2} \ (rad/sec)$

$$-\pi$$
 (rad) / T_s (sec)

Sampling

$$\omega_s = 2\pi f_s (rad/sec)$$

$$2\pi$$
 (rad) / T_s (sec)

For the period of T_s Angular displacement $\frac{\pi}{2}$ (rad)

Angular Frequencies in Sampling

continuous-time signals

Signal Frequency

$$f_0 = \frac{1}{T_0}$$

Signal Angular Frequency

$$\omega_0 = 2\pi f_0 (rad/sec)$$

sampling sequence

Sampling Frequency

$$f_s = \frac{1}{T_s}$$

Sampling Angular Frequency

$$\omega_s = 2\pi f_s \ (rad \, lsec)$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann