

Input Stage Latch

Output Stage Latch

CLK $=0 \quad$ CLK $=0 \rightarrow 1$

When $\mathrm{D}=0$
$\mathrm{S}=1$
R=0
When $\mathrm{D}=1$
$\mathrm{S}=0$
$\mathrm{R}=1$
$D=0 / 1$ at the rising edge reset / set the output latch

CLK $=1$
When $\mathrm{D}=0 \rightarrow 1$
$\mathrm{S}=1$
$\mathrm{R}=0$
When $\mathrm{D}=1 \rightarrow 0$
$\mathrm{S}=0$
$R=1$

Maintain reset / set at the rising edge regardless of input changes

Input Stage Latch - CLK =0
$\mathrm{SR}=11$

If the clock is low, both the output signals of the input stage are high regardless of the data input; the output latch is unaffected and it stores the previous state.

$$
\begin{aligned}
& \mathrm{D}=0 \rightarrow \mathrm{SR}=10 \\
& \mathrm{D}=1 \rightarrow \mathrm{SR}=01
\end{aligned}
$$

When the clock signal changes from low to high, (rising edge) only one of the output voltages (S or R) goes low (depending on the data signal D) and sets/resets the output latch: $(\mathrm{D}=0 \rightarrow \mathrm{SR}=10 \rightarrow$ reset the output latch $\rightarrow \mathrm{Q}=0$) $(\mathrm{D}=1 \rightarrow \mathrm{SR}=01 \rightarrow$ set the output latch $\rightarrow \mathrm{Q}=1$)
if $\mathrm{D}=0$, the lower output becomes low ; (Reset operation $\mathrm{SR}=10$)
if $D=1$, the upper output becomes low. (Set operation $S R=01$)

Input Stage Latch - CLK=1

$$
\begin{aligned}
& \mathrm{D}=(0 \rightarrow 1) \rightarrow \mathrm{SR}=10 \\
& \mathrm{D}=(1 \rightarrow 0) \rightarrow \mathrm{SR}=01
\end{aligned}
$$

If the clock signal continues staying high, the outputs keep their states regardless of the data input ($D=0: S R=10, D=1: S R=01$ at the rising edge) and force the output latch to stay in the corresponding state as the input logical zero remains active (SR=10: Reset, SR=01: Set) while the clock is high.

If the clock signal continues staying high, the outputs keep their states regardless of the data input and force the output latch to stay in the corresponding state as the input logical zero remains active while the clock is high.

Hence the role of the output latch is to store the data only while the clock is low.

The input stage (the two latches on the left) processes the clock and data signals to ensure correct input signals for the output stage (the single latch on the right).

The circuit is closely related to the gated D latch as both the circuits
convert the two D input states (0 and 1) D to two input combinations (10 and 01) SR
for the output SR latch
by inverting the data input signal
(both the circuits split the single D signal in two complementary S and R signals).
The difference is that
in the gated D latch, simple NAND logical gates are used while in the positive-edge-triggered D flip-flop SR NAND latches are used for this purpose.
The role of these latches is to "lock" the active output producing low voltage (a logical zero); thus the positive-edge-triggered D flipflop can be thought of as a gated D latch with latched input gates.

NAND RS Latch

$$
\begin{aligned}
& \begin{array}{llll}
S^{\prime}=0 & S^{\prime}=1 & S^{\prime}=0 & S^{\prime}=1 \\
R^{\prime}=1 & R^{\prime}=0 & R^{\prime}=1 & R^{\prime}=0
\end{array} \\
& \mathrm{~S}^{\prime}=1 \\
& \mathrm{~S}^{\prime}=1 \\
& \mathrm{~S}^{\prime}=1 \\
& S^{\prime}=1 \\
& \mathrm{R}^{\prime}=1 \quad \mathrm{R}^{\prime}=1 \\
& \mathrm{R}^{\prime}=1 \\
& \mathrm{R}^{\prime}=1
\end{aligned}
$$

CLK=0
$L 2$ in Set if $D=1$

L2 in forbidden if $\mathrm{D}=0$

L1 in Reset
if $\mathrm{P}=0$
$S=1, R=1$, $\mathrm{P}=0$

L1 in forbidden
if $P=1$
X

$$
\begin{aligned}
& S=1, R=1, \\
& P=1
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{P}=0 \longleftarrow & \mathrm{~L} 2 \text { in Set } \\
\mathrm{P}=1 & \mathrm{~L} 2 \text { in Reset, }, \\
& \text { forbidden }
\end{array}
$$

CLK=1
L1 in Set if $P=0 \quad$ L1 in Hold if $P=1$
L2 in Set

$$
\text { if } S=0 \text {, }
$$

$$
\begin{aligned}
& S=0, R=1, \\
& P=0
\end{aligned}
$$

X

L2 in Reset if $S=1$,
X

$$
\begin{aligned}
& S=1, R=0, \\
& P=1
\end{aligned}
$$

L2 in Hold $\underset{\substack{\text { if } \\ D=1}}{ }$
X

$$
\begin{aligned}
& S=1, R=0, \\
& P=1
\end{aligned}
$$

$\begin{array}{ll}L 2 \text { in Forbidden } & \begin{array}{l}\text { if } S=0, \\ D=0\end{array}\end{array}$
X
$\mathrm{S}=0, \mathrm{R}=1$,
$\mathrm{P}=1$

NAND RS Latch

R

Clocked NOR RS Latch

SET op for the ouput latch

$\mathrm{CLK}=0 \rightarrow \mathbf{S X}_{1} \square \mathrm{CLK}=1$
$\mathrm{D}=1 \rightarrow \mathrm{P}=0$

$$
\begin{aligned}
& \mathrm{CLK}=0 \rightarrow \mathbf{X}-\square \mathrm{C} \square \mathrm{C}=1 \\
& \mathrm{D}=0 \rightarrow \mathrm{P}=1
\end{aligned}
$$

$$
\begin{aligned}
& C L K=0 \rightarrow \mathbf{X}^{1} \triangleleft C L K=1 \\
& D=0 / 1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CLK}=1 \rightarrow \mathrm{XO} \square \mathrm{CLK}=0 \\
& \mathrm{D}=1 \longrightarrow \mathrm{P}=1
\end{aligned}
$$

Forbidden op for the ouput latch

