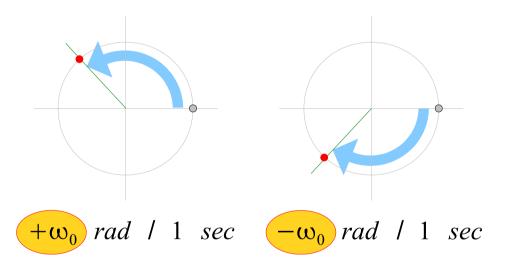
Sampling Basics(1B)

•


•

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Measuring Rotation Rate

Angular Speed (Frequency)

$$\omega = \frac{2\pi}{T} = 2\pi f$$

$$1 rpm = 2\pi rad / 1 min$$

$$= 2\pi rad / 60 sec$$

$$= \frac{\pi}{30} rad / sec$$

$$+\omega_0$$
 (rad/sec)

$$-\omega_0$$
 (rad/sec)

Negative Angles

Angular Frequency and Sinusoid

Time Domain

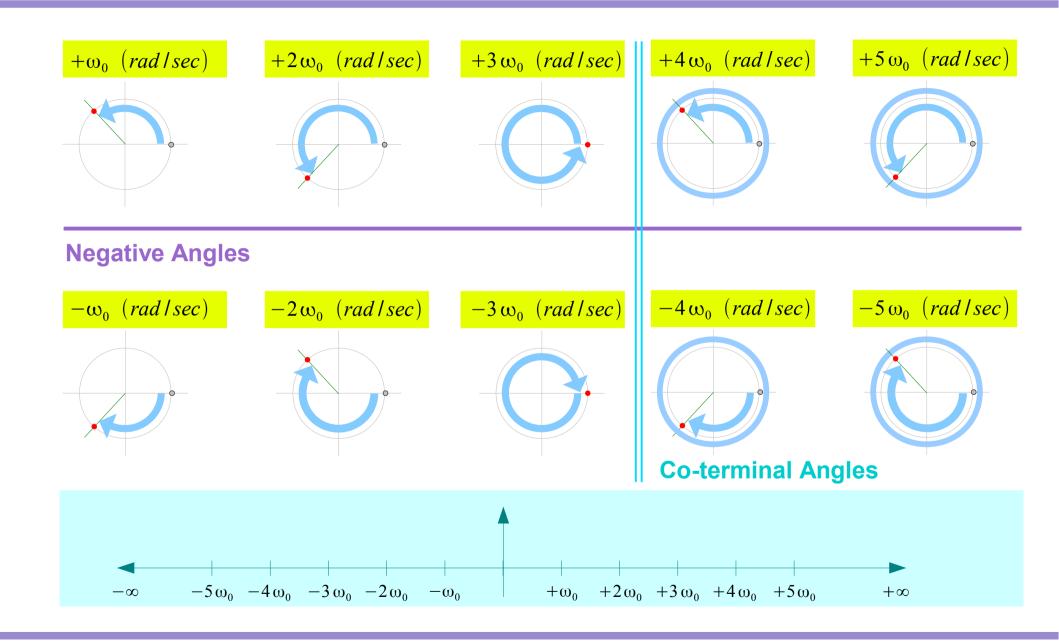
x(t) t

Frequency Domain

$$\omega_0 = \frac{2\pi}{T_0}$$

$$x(t) = A \cos(\omega_0 t)$$
$$= \frac{A}{2} e^{j\omega_0 t} + \frac{A}{2} e^{-j\omega_0 t}$$

For 1 second

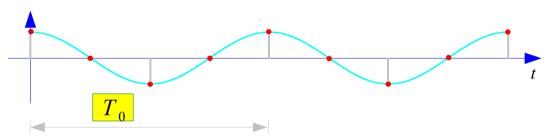

 $+\omega_0$ (rad/sec)

For 1 second

 $-\omega_0$ (rad/sec)

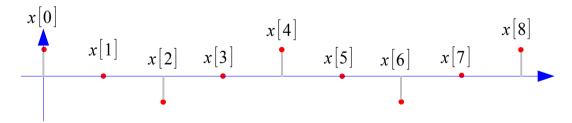
Angular Speed Examples

Angular Speed and Frequency


$$\omega = \frac{2\pi}{T} = 2\pi f$$

T (sec)	0.01 sec	0.1 sec	1 sec	10 sec	100 sec
f (Hz)	100 Hz	10 Hz	1 Hz	0.1 Hz	0.01 Hz
w (rad/sec)	$\frac{200\pi}{(radlsec)}$	$\begin{array}{c} 20\pi \\ (\textit{rad I sec}) \end{array}$	2π (rad sec)	0.2π (rad/sec)	$0.02\pi \\ (\textit{rad/sec})$
	= 628	= 62.8	= 6.28	= 0.628	=0.0628

Sampling


continuous-time signals

$$x(t) = A \cos(\omega_0 t)$$

discrete-time sequence

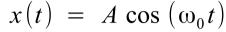
Sampling Time

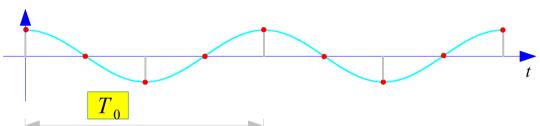
$$T_s \ (=\tau)$$

Sequence Time Length

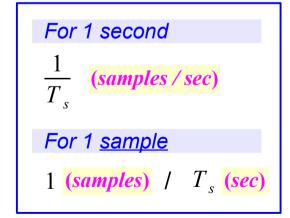
$$T = N \cdot T_s$$

Sampling Frequency


$$f_s = \frac{1}{T_s}$$
 (samples/sec)


Signal's Frequency

$$f_0 = \frac{1}{T_0}$$
 (cycles/sec)


Sampling Frequency

continuous-time signals

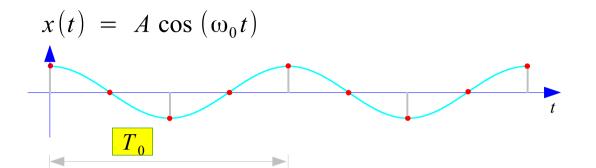
For 1 second
$$\frac{1}{T_0} \quad (cycles / sec)$$
For 1 cycle
$$1 \quad (cycles) \quad / \quad T_0 \quad (sec)$$

Sampling Time

$$T_s = (= \tau)$$

Sequence Time Length

$$T = N \cdot T_s$$


Sampling Frequency

$$f_s = \frac{1}{T_s}$$
 (samples/sec)

Signal's Frequency

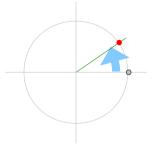
$$f_0 = \frac{1}{T_0}$$
 (cycles/sec)

Angular Frequencies in Sampling

$$\omega_0 = 2\pi f_0$$
 $f_0 = \frac{1}{T_0}$

$$f_0 = \frac{1}{T_0}$$

$$T_s = \tau$$


$$\omega_s = 2\pi f_s \qquad f_s = \frac{1}{T_s}$$

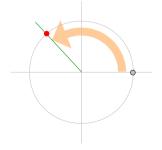
$$f_s = \frac{1}{T_s}$$

continuous-time signals

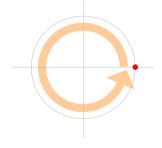

For 1 second

$$\omega_0 = 2\pi f_0 (rad/sec) \qquad 2\pi (rad) / T_0 (sec)$$

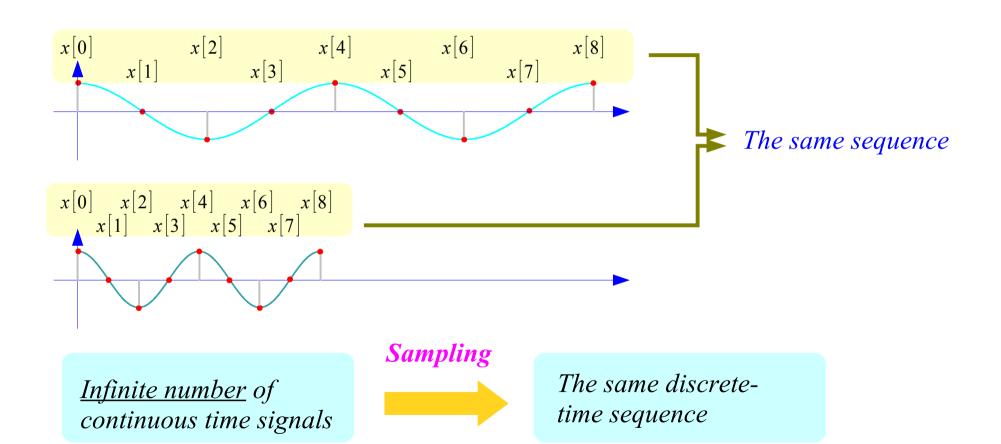
For 1 revolution


$$2\pi (rad) / T_0 (sec)$$

sampling sequence


For 1 second

$$\omega_s = 2\pi f_s (rad/sec) \qquad 2\pi (rad) / T_s (sec)$$


For 1 revolution

$$2\pi (rad) / T_s (sec)$$

Dimensionless Sequence

$$x[n] \longrightarrow \cdots, x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], \cdots$$

Sampling of Sinusoid Functions

$$x(t) = A \cos(\omega t + \phi)$$

$$t \rightarrow n T_s$$

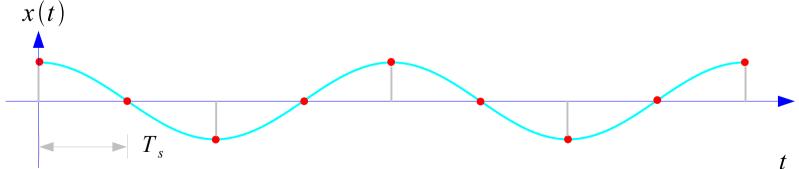
$$x[n] = x(n T_s)$$

$$= A \cos(\omega \cdot n T_s + \phi)$$

$$= A \cos(\omega \cdot T_s n + \phi)$$

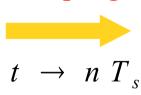
$$= A \cos(\hat{\omega} \cdot n + \phi)$$

$$\hat{\omega} = \omega \cdot T_s = \frac{\omega}{1/T_s}$$


$$\hat{\omega} = \frac{\omega}{f_s} = 2\pi \frac{f}{f_s}$$

Normalized to f

Normalized Radian Frequency



Normalized Radian Frequency (1)

continuous-time signals

x(t)

Sampling

discrete-time sequence

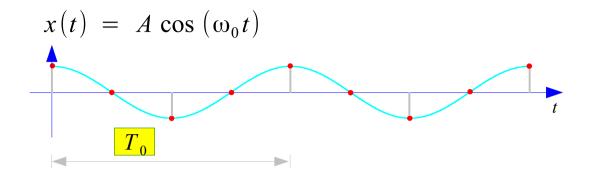
$$x[n] = x(nT_s)$$

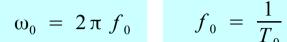
Angular Frequency

 ω (rad/sec)

Normalized Radian Frequency

$$\hat{\omega} = \omega \cdot T_s \ (rad \, | \, sample)$$


Angular Speed X Sampling Time


Normalized Radian Frequency

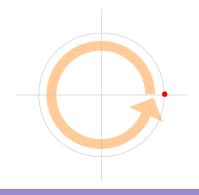
can be viewed as "the <u>angular displacement</u> of a signal during the period of its <u>sample time</u> T_s "

- Negative Angles
 - → folding
- Co-terminal Angles
 - \rightarrow periodic

Normalized Radian Frequency (2)

$$f_0 = \frac{1}{T_0}$$

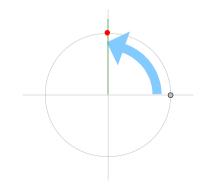
$$T_s = \tau$$


$$\omega_s = 2\pi f_s \qquad f_s = \frac{1}{T}$$

$$f_s = \frac{1}{T_s}$$

sampling sequence

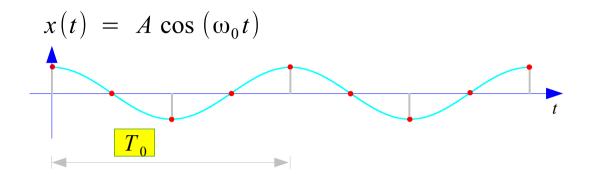
For 1 sample


$$2\pi (rad) / T_s (sec)$$

continuous-time signals

For T_s second

$$\hat{\omega} = \omega_0 \cdot T_s \ (rad \, | sample)$$



$$\hat{\omega} = \omega T_s$$

$$\hat{\omega} = \frac{\omega}{f_s}$$

Signal's relative angle position after each of T_s second

Normalized Radian Frequency (3)

$$\omega_0 = 2 \pi f_0$$
 $f_0 = \frac{1}{T_0}$

$$T_s = \tau$$

$$\omega_s = 2\pi f_s \qquad f_s = \frac{1}{T_s}$$

$$f_s = \frac{1}{T_s}$$

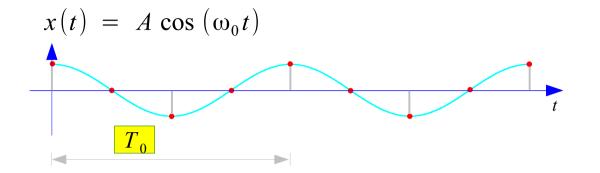
Normalized Frequency

$$\frac{f_0}{f_s} \frac{(cycle \mid sec)}{(sample \mid sec)}$$

$$\frac{f_0}{f_s} \frac{(cycle \mid sec)}{(sample \mid sec)} \longrightarrow \frac{f_0}{f_s} (cycle \mid sample)$$

Normalized Radian Frequency

$$2\pi \frac{(rad)}{(cycle)} \cdot \frac{f_0}{f_s} \frac{(cycle)}{(sample)} \longrightarrow \frac{\omega_0}{f_s} (rad \mid sample)$$

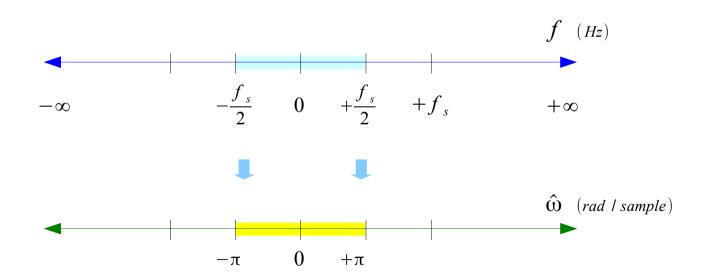

$$\frac{\omega_0}{f_s}$$
 (rad I sample)

$$f \in \left(-\frac{f_s}{2}, + \frac{f_s}{2}\right)$$

$$\frac{f}{f_s} \in \left(-\frac{1}{2}, + \frac{1}{2}\right)$$

$$\hat{\omega} \in \left[-\pi, +\pi\right]$$

Normalized Radian Frequency (4)


$$\omega_0 = 2\pi f_0$$

$$f_0 = \frac{1}{T_0}$$

$$T_s$$
 $(= au)$

$$\omega_s = 2\pi f_s \qquad f_s = \frac{1}{T_s}$$

$$f_s = \frac{1}{T_s}$$

$$\hat{\omega} = +\pi (rad/sample)$$

$$\hat{\omega} = -\pi \ (rad \, l \, sample)$$

Example (1)

$$\omega_s = 2\pi f_s \text{ (rad/sec)}$$

$$2\pi (rad) / T_s (sec)$$

$$\hat{\omega}_1 = \omega_1 \cdot T_s \ (rad \, | sample)$$

$$\hat{\omega}_2 = \omega_2 \cdot T_s \ (rad \, | sample)$$

Negative Angles

$$A\cos\left(\omega_1 t + \phi\right)$$

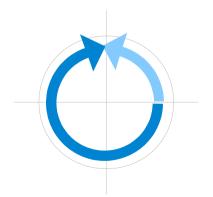
$$\omega_1 = \frac{\omega_s}{2}$$

$$\hat{\omega}_1 = \pi (rad)$$

$$\omega_1 = -\frac{\omega_s}{2}$$

$$\hat{\omega}_1 = -\pi (rad)$$

$A \cos (\omega_2 t + \phi)$


$$\omega_2 = \frac{\omega_s}{4}$$

$$\hat{\omega}_2 = \frac{\pi}{2} (rad)$$

$$\omega_2 = -\frac{3\omega_s}{2}$$

$$\hat{\omega}_2 = -\frac{3\pi}{2} (rad)$$

Example (2)

$$\omega_s = 2\pi f_s (rad/sec)$$

$$2\pi (rad) / T_s (sec)$$

$$\hat{\omega}_1 = \omega_1 \cdot T_s \ (rad \, | sample)$$

$$\hat{\omega}_2 = \omega_2 \cdot T_s \ (rad \, | sample)$$

Co-terminal Angles

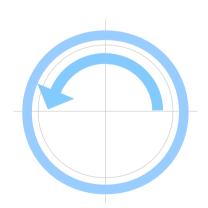
$$A\cos\left(\omega_{1}t+\phi\right)$$

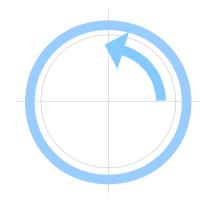
$$\omega_1 = \frac{\omega_s}{2}$$

$$\hat{\omega}_1 = \pi (rad)$$

$$\omega_1 = \frac{\omega_s}{2} + \omega_s$$

$$\hat{\omega}_1 = \pi + 2\pi (rad)$$


$A \cos (\omega_2 t + \phi)$


$$\omega_2 = \frac{\omega_s}{4}$$

$$\hat{\omega}_2 = \frac{\pi}{2} (rad)$$

$$\omega_2 = \frac{\omega_s}{4} + \omega_s$$

$$\hat{\omega}_2 = \frac{\pi}{2} + 2\pi (rad)$$

Co-terminal Angles (1)

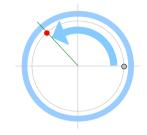
For 1 sample

$$2\pi (rad) / T_s (sec)$$

$$\hat{\omega} = \omega \cdot T_s \quad (rad/sample)$$

$$= \omega / f_s \quad (rad/sample)$$

For T_s second


$$\hat{\omega} = \omega \cdot T_s \ (rad/sample)$$

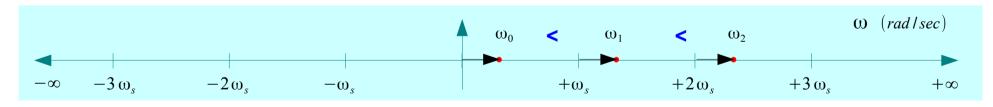
$$f_0$$

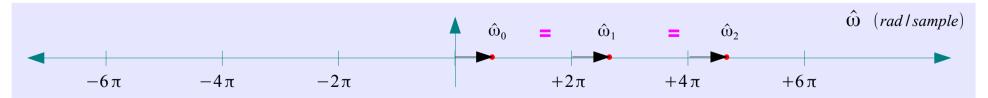
$$\omega_0 = 2\pi f_0$$

 $\hat{\omega}_0$ (rad | sample)

$$f_0 + f_s$$

$$\omega_1 = 2\pi (f_0 + f_s)$$


 $\hat{\omega}_0 + 2\pi$ (rad/sample)



$$f_0 + 2f_s$$

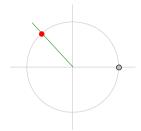
$$\omega_2 = 2\pi (f_0 + 2f_s)$$

 $\hat{\omega}_0 \! + \! 4\pi \ (\textit{radIsample})$

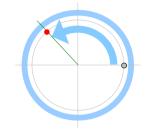
Co-terminal Angles (2)

For 1 sample

$$2\pi (rad) / T_s (sec)$$



$$\hat{\omega} = \frac{\omega \cdot T_s}{\omega \cdot T_s} (rad/sample)$$


$$= \omega / f_s (rad/sample)$$

For T_s second

$$\hat{\omega} = \omega \cdot T_s \ (rad/sample)$$

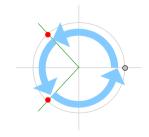
$$f_0$$
 $\omega_0 = 2\pi f_0$ $\hat{\omega}_0$ (rad/sample)

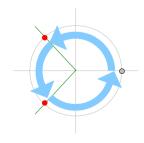
$$f_0 + f_s$$

$$\omega_1 = 2\pi (f_0 + f_s)$$

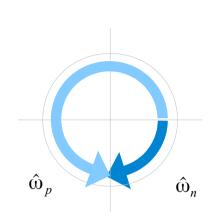
$$\hat{\omega}_0 + 2\pi \text{ (rad/sample)}$$

$$f_0 + 2f_s$$


$$\omega_2 = 2\pi (f_0 + 2f_s)$$


$$\hat{\omega}_0 + 4\pi \quad (rad/sample)$$

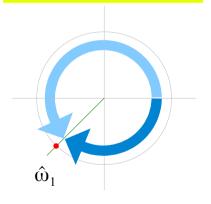
Co-terminal Angles


The same angular positions after each sample time.

Positive & Negative Angles (1)

$$\begin{array}{cccc} + & - \\ \hat{\omega}_p & - & \hat{\omega}_n & = & 2\pi \end{array}$$

Positive Normalized Rad Freq

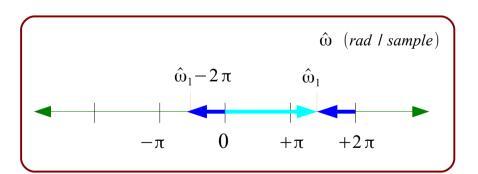

$$\hat{\omega}_p = 2\pi + \hat{\omega}_n$$

Negative Normalized Rad Freq

$$\hat{\omega}_n = \hat{\omega}_p - 2\pi$$

$$- +$$

$$\frac{f_s}{2} < f_1 < f_s$$


Positive Angle

$$+\pi < \hat{\omega}_1 < 2\pi$$

Negative Angle

$$-\pi~<~\hat{\omega}_1-2\pi~<~0$$

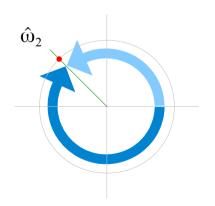
Normalized Radian Frequency

Positive & Negative Angles (2)

$$+ \qquad -$$

$$\hat{\omega}_p - \hat{\omega}_n = 2\pi$$

Positive Normalized Rad Freq

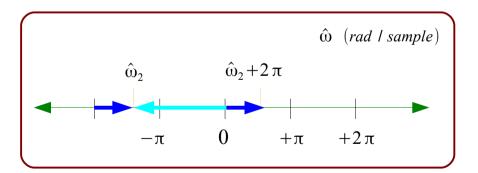

$$\hat{\omega}_p = 2\pi + \hat{\omega}_n$$

Negative Normalized Rad Freq

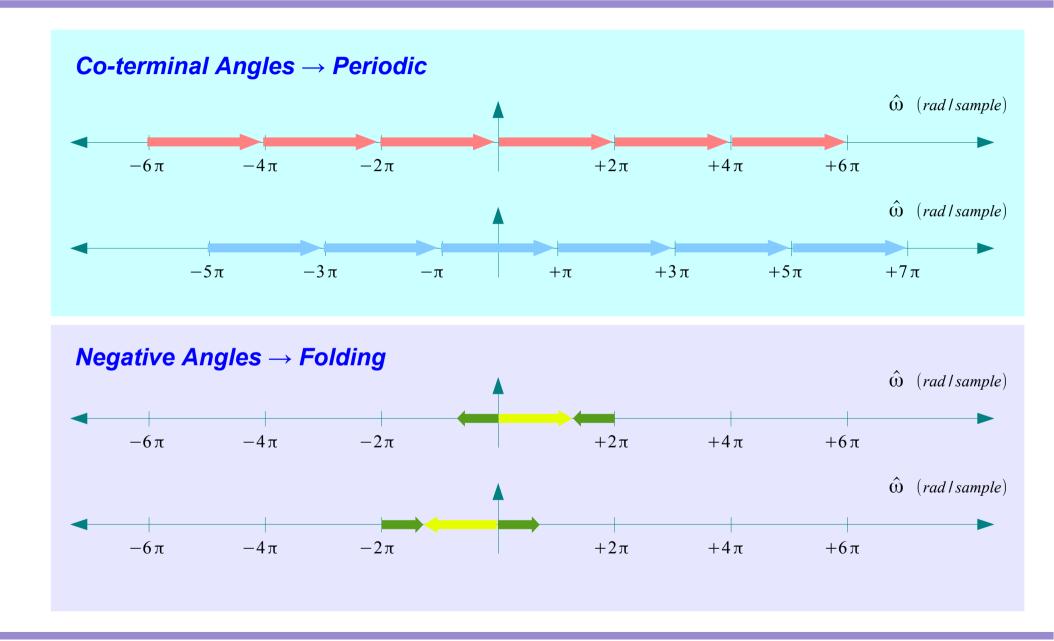
$$\hat{\omega}_n = \hat{\omega}_p - 2\pi$$

$$- +$$

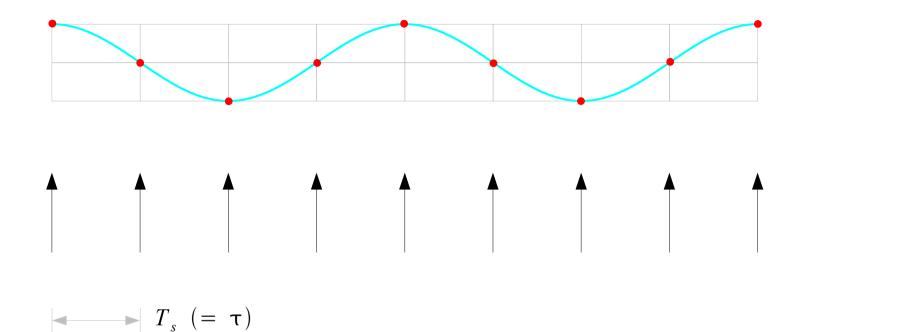
$$-f_s < f_2 < -\frac{f_s}{2}$$


Negative Angle

$$-2\pi~<~\hat{\omega}_2~<~-\pi$$


Positive Angle

$$0 < 2\pi + \hat{\omega}_2 < \pi$$


Normalized Radian Frequency

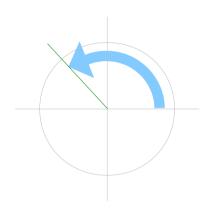
Periodic and Folding

Example

$$T_{s}$$

Sequence Time Length
$$T = NT_s$$

$$T = NT$$

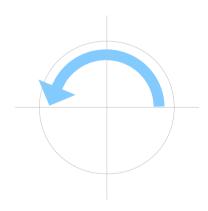

$$f_s = \frac{1}{T_s}$$

 $f_s = \frac{1}{T_s}$ (samples per second)

 $T = NT_s$

Sampling

$$\omega_s = 2\pi f_s (rad/sec)$$


$$\omega_1 = 2\pi f_1$$

$$\omega_1 = \frac{\omega_s}{2} \ (rad/sec)$$

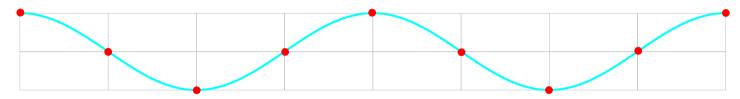
$$f_1 = \frac{f_s}{2} \ (rad/sec)$$

 $2\pi (rad) / T_s(sec)$

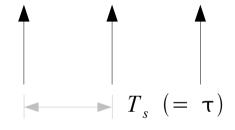
$$\pi$$
 (rad) / T_s (sec)

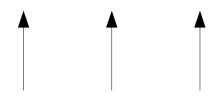
$$\omega_2 = 2\pi f_2$$

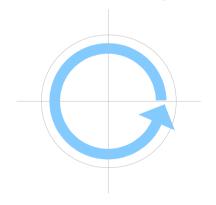
$$\omega_1 = \frac{\omega_s}{2} \ (rad/sec)$$
 $\omega_2 = -\frac{\omega_s}{2} \ (rad/sec)$

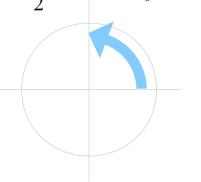

$$f_1 = \frac{f_s}{2} (rad/sec)$$
 $f_2 = -\frac{f_s}{2} (rad/sec)$

$$-\pi$$
 (rad) / T_s (sec)




Sampling


$$\omega_s = 2\pi f_s (rad/sec)$$



$$2\pi (rad) / T_s(sec)$$

$$\frac{\pi}{2}$$
 (rad) | T_s (sec)

For the period of
$$T_s$$

Angular displacement $\frac{\pi}{2}$ (rad)

$$\hat{\omega} = \omega \cdot T_s \quad (rad)$$

$$= 2\pi f_1 \cdot T_s \quad (rad)$$

$$= 2\pi \frac{f_s}{4} \cdot T_s \quad (rad)$$

$$= \frac{\pi}{2} \quad (rad)$$

Angular Frequencies in Sampling

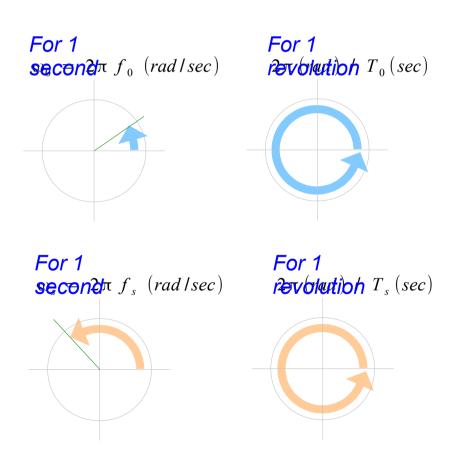
continuous-time signals

Signal Frequency

$$f_0 = \frac{1}{T_0}$$

Signal Angular Frequency

$$\omega_0 = 2\pi f_0 (rad/sec)$$


sampling sequence

Sampling Frequency

$$f_s = \frac{1}{T_s}$$

Sampling Angular Frequency

$$\omega_s = 2\pi f_s \ (rad \, lsec)$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann