Thu Oct 27, 2011 8:21 AM
$x \uparrow \hat{x} \Leftrightarrow x \rightarrow \hat{x}^{-}$
x luparrow \hat $x \backslash$ Leftrightarrow x \to That x^{\wedge} -
$x \uparrow \hat{x} \times$ tends to \times hat from below
left continuity does not imply continuity; you can have discontinuity.

$$
\lim _{x \uparrow \hat{x}} f(x)=\lim _{x \rightarrow \hat{x}^{-}} f(x)=f(\hat{x})
$$

but it is possible that
and hence the figure in my hand-written notes.
$f\left(\hat{x}^{+}\right) \neq f(\hat{x})$
\hat{u}
$f(\hat{x})=f\left(\hat{x}^{-}\right)$

left-continous function

$f\left(\right.$ hat $\left.x^{\wedge}+\right)$ \ne $f($ hat $x)$
\hat{x}
$f($ That $x)=f\left(\right.$ hat $\left.x^{\wedge}-\right)$

HW: Find the definition of a function, and answer this question: Can a function have multi-values? ie., could $f(\hat{x})$ have different values?

A function is a one-to-one mapping (injective?)

HW: Draw a figure to give an example of a right-continuous function.
continuity means that you must have both left and right continuity at the same time.
inf $=$ infimum (similar, but not the same as minimum)
take the fig. on p.1: left continuous function
define: $\quad \hat{u}:=f\left(\hat{x}^{+}\right)$
What $u:=f\left(\right.$ That $\left.x^{\wedge}+\right)$
$\min \left\{x \mid f(x) \geq \hat{u}:=f\left(\hat{x}^{+}\right)\right\}$does not exist; why?
$\backslash \min \backslash\left\{x \backslash \mid \backslash f(x)\right.$ ge hat $u:=f\left(\right.$ hat $\left.\left.x^{\wedge}+\right) \backslash\right\}$
$\inf \left\{x \mid f(x) \geq \hat{u}:=f\left(\hat{x}^{+}\right)\right\}=\hat{x}$
$\operatorname{linf} \backslash\left\{x \backslash \mid \backslash f(x)\right.$ Ie That $u:=f\left(\right.$ hat $\left.\left.x^{\wedge}+\right) \backslash\right\}=$ hat x
$\hat{x}^{+}=\hat{x}+\epsilon$
$\epsilon>0$
\hat $x^{\wedge}+=$ hat $x+$ epsilon
epsilon > 0

Consider a sequence $\left\{\epsilon_{i}>0, i=1,2, \cdots, \infty\right\}$ $\backslash\{$ lepsilon_i >0, \i=1, 2, \cots, \infty
$~ }$
which generates the sequence

$$
\left\{\hat{x}_{i}^{+}\right\}=\left\{\hat{x}+\epsilon_{i}, i=1,2, \cdots, \infty\right\}
$$

\hat{u} needs not be equal to $f\left(\hat{x}^{+}\right)$
$\min \left\{x \mid f(x) \geq \hat{u}:=f\left(\hat{x}^{+}\right)\right\}:=\underset{x>\hat{x}}{\operatorname{argmin}} f(x)$
$\min \backslash\left\{x \backslash \mid \backslash f(x)\right.$ ge \backslash hat $u:=f\left(\right.$ hat $\left.\left.x^{\wedge}+\right) \backslash\right\}:=$ \underset $\{x>$ What $x\}\{\backslash$ text\{argmin $\left.\}\right\} f(x)$
$\bar{x}:=\operatorname{argmin} f(x)$
\bar $x:=$ \underset $\{x>$ That $x\}\{\backslash$ text\{argmin $\}\} f(x)$
does not exist for left-continuous function at x hat
inf = infimum = greatest lower bound
Thu Nov 3, 2011 10:08 AM
Refer to the figure on p.1, define \hat{u} to be anywhere above $f(\hat{x})$ but below $f\left(\hat{x}^{+}\right)$.
$\min \{x \mid f(x) \geq \hat{u}\}:=\operatorname{argmin}\{f(x) \geq \hat{u}\}$
does not exist. Proof by contradiction: Suppose that x tilde is the minimizer, i.e.,
$\tilde{x}=\min \{x \mid f(x) \geq \hat{u}\}:=\operatorname{argmin}\{f(x) \geq \hat{u}\}$
and assume that the function is monotonically increasing, then you can always find $\hat{x}<\tilde{x}-\epsilon<\tilde{x}$ such that $f(\hat{x})<f(\tilde{x}-\epsilon)<f(\tilde{x})$

That x < tilde x - epsilon < \tilde x

and thus $\tilde{x}-\epsilon$ is the new minimum! and hence the minimum does not exist.

But the infimum (greatest lower bound) exists, and that's
$\hat{x}=\inf \{x \mid f(x) \geq \hat{u}\}:=\operatorname{arginf}\{f(x) \geq \hat{u}\}$ x

Generalize the above argument (proof by contradiction) to left-continuous functions (not just monotonically increasing functions).

A cdf must be increasing, even though not nee. monotonically increasing; check this statement.

A cdf can be discontinuous, since it can be left-continuous, and therefore discontinuous.

Need to explain Eq.(2.7) in Xiu 2010 p.15.

