Correlation

Survey Research & Design in Psychology
James Neill, 2012

Overview

- 1. Purpose of correlation
- 2. Covariation
- 3. Linear correlation
- 4. Types of correlation
- 5. Interpreting correlation
- 6. Assumptions / limitations
- 7. Dealing with several correlations

2

Readings

Howell (2010)

- Ch6 Categorical Data & Chi-Square
- Ch9 Correlation & Regression
- Ch10 Alternative Correlational Techniques
 - 10.1 Point-Biserial Correlation and Phi: Pearson Correlation by Another Name
 - 10.3 Correlation Coefficients for Ranked Data

3

Purpose of correlation

4

Purpose of correlation

The underlying purpose of correlation is to help address the question:

What is the

- relationship or
- degree of association or
- amount of shared variance between two variables?

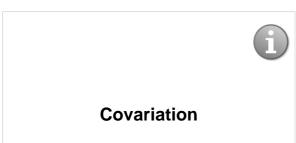
Purpose of correlation

Other ways of expressing the underlying correlational question include:

To what extent

- do two variables covary?
- are two variables dependent or independent of one another?
- can one variable be predicted from another?

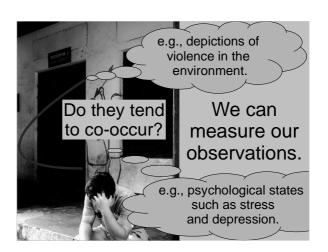
6



The world is made of covariation.

7

We observe covariations in the psychosocial world.



Covariations are the basis of more complex models.

A

Linear correlation

Linear correlation

The extent to which two variables have a simple **linear** (straight-line) relationship.

Linear correlations provide the building blocks for multivariate correlational analyses, such as:

- · Factor analysis
- Reliability
- Multiple linear regression

13

Linear correlation

Linear relations between variables are indicated by correlations:

- **Direction:** Correlation sign (+ / -) indicates direction of linear relationship
- **Strength:** Correlation size indicates strength (ranges from -1 to +1)
- **Statistical significance:** *p* indicates likelihood that observed relationship could have occurred by chance

14

What is the linear correlation? Types of answers

- No relationship (independence)
- Linear relationship:
 - –As one variable ↑s, so does the other (+ve)
 - -As one variable \uparrow s, the other \downarrow s (-ve)
- Non-linear relationship
- Pay caution due to:
 - Heteroscedasticity
 - -Restricted range
 - -Heterogeneous samples

15

Types of correlation

To decide which type of correlation to use, consider the **levels of measurement** for each variable

16

Types of correlation

- Nominal by nominal:
 Phi (Φ) / Cramer's V, Chi-squared
- Ordinal by ordinal:
 Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{ob}
- Interval/ratio by interval/ratio: Product-moment or Pearson's r

Types of correlation and LOM Nominal Ordinal Int/Ratio Scatterplot, Clustered barbar chart or chart, error-bar chart Chi-square, Nominal \leftarrow Recode Point bi-serial Phi (ϕ) or correlation Cramer's V (r_{nh}) Scatterplot or clustered bar chart ←11_{Recode} Ordinal Spearman's Rho or Kendall's Tau Scatterplot Product-Int/Ratio moment correlation (18

19

Nominal by nominal

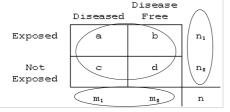
Nominal by nominal correlational approaches

- Contingency (or cross-tab) tables
 - Observed
 - Expected
 - Row and/or column %s
 - Marginal totals
- Clustered bar chart
- Chi-square
- Phi/Cramer's V

20

Contingency tables

- · Bivariate frequency tables
- Cell frequencies (red)
- · Marginal totals (blue)



Contingency table: Example

b2 Do you snore? * b3r Smoker Crosstabulation

Count				
		b3r Sr	noker	
		0 No	1 Yes	Total
b2 Do you	0 yes	50	16	66
sn ore?	1 no	111	9	120
Total		161	25	186

RED = Contingency cells BLUE = Marginal totals

Contingency table: Example

b2 Do you snore? * b3r Smoker Crosstabulation

			b3r Smoker		
			0 No	1 Yes	Total
b2 Do you	0 yes	Count	50	16	66
snore?		Expected Count	57.1	8.9	66.0
	1 no	Count	111	9	120
		Expected Count	103.9	16.1	120.0
Total		Count	161	25	186
		Expected Count	161.0	25.0	186.0

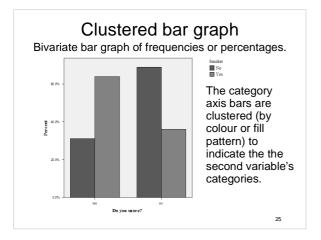
Chi-square is based on the differences between the actual and expected cell counts.

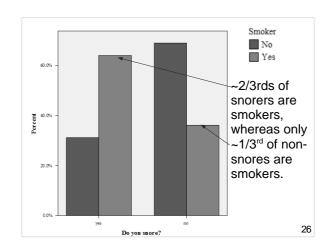
b2 Do you snore? * b3r Smoker Crosstabulation

% within b2	Do you sn	ore?		
	b3r Smoker			
		0 No	1 Yes	Total
b2 Do you	0 yes	75.8%	24.2%	100.0%
sn ore?	1 no	92.5%	7.5%	100.0%
Total		86.6%	13.4%	100.0%

Row and/or column cell percentages may also aid interpretation e.g., ~2/3rds of smokers snore, whereas only ~1/3rd of non-smokers snore. b2 Do you snore? * b3r \Smoker Crosstabulation

% within b3r	Smoker				
		b3r S	moker		
		0 No	1 Yes	Total	
b2 Do you	0 yes	31.4%	464.0%	35.5%	
sn ore?	1 no	68.9%	▲36.0%	64.5%	
Total		100.0%	100.0%	100.0%	24





Pearson chi-square test

The value of the test-statistic is

$$X^2 = \sum \frac{(O-E)^2}{E},$$

where

 X^2 = the test statistic that approaches a χ^2 distribution.

O = frequencies observed;

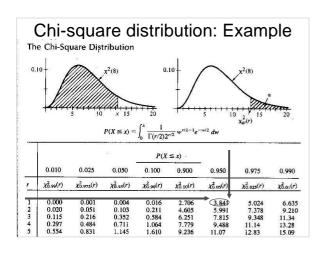
E = frequencies expected (asserted by the null hypothesis).

27

Pearson chi-square test: Example

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.259	(1)	.001
Continuity Correction ^a	8.870	1	.003
Likelihood Ratio	9.780	1	.002
Fisher's Exact Test			
Linear-by-Linear Association	10.204	1	.001
N of Valid Cases	186		

Write-up: χ 2 (1, 186) = 10.26, p = .001



Phi (φ) & Cramer's V

(non-parametric measures of correlation)

Phi (φ)

• Use for 2x2, 2x3, 3x2 analyses e.g., Gender (2) & Pass/Fail (2)

Cramer's V

 Use for 3x3 or greater analyses e.g., Favourite Season (4) x Favourite Sense (5)

Phi (φ) & Cramer's V: Example

Symmetric Measures

		Value	Approx. Sig.
Nominal by	Phi	(235)	(.001)
Nominal	Cramer's V	.235	.001
N of Valid Cases		186	

$$\chi^2$$
 (1, 186) = 10.26, p = .001, φ = .24

31

Ordinal by ordinal

32

Ordinal by ordinal correlational approaches

- Spearman's rho (r_s)
- Kendall tau (τ)
- Alternatively, use nominal by nominal techniques (i.e., treat as lower level of measurement)

33

Graphing ordinal by ordinal data

- Ordinal by ordinal data is difficult to visualise because its non-parametric, yet there may be many points.
- Consider using:
 - Non-parametric approaches (e.g., clustered bar chart)
 - -Parametric approaches (e.g., scatterplot with binning)

34

Spearman's rho (r_s) or Spearman's rank order correlation

- For ranked (ordinal) data
 - -e.g. Olympic Placing correlated with World Ranking
- Uses product-moment correlation formula
- Interpretation is adjusted to consider the underlying ranked scales

Kendall's Tau (τ)

- Tau a
 - -Does not take joint ranks into account
- Tau b
 - -Takes joint ranks into account
 - -For square tables
- Tau c
 - -Takes joint ranks into account
 - -For rectangular tables

36

Dichotomous by interval/ratio

continuous variable

-e.g., belief in god (yes/no) and amount of international travel

Point-biserial correlation $(r_{\rm pb})$

 Calculate as for Pearson's product-moment r,

• One dichotomous & one

 Adjust interpretation to consider the underlying scales

38

37

Those who report that they believe in God also report having travelled to slightly fewer countries ($r_{\rm pb}$ = -.10) but this difference could have occurred by chance (p > .05), thus H₀ is not rejected.

Point-biserial correlation (r_{pb}) : Example Correlations

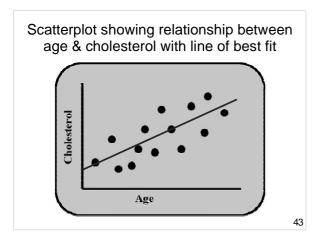
		b4r God	b8 Countries
b4r God	Pearson Correlation	1	095
0 = No	Sig. (2-tailed)		.288
1 = Yes	N	127	127
b8 Countries	Pearson Correlation	095	1
	Sig. (2-tailed)	.288	
	N	127	190
			Δ

41

Interval/ratio by Interval/ratio

Scatterplot

- Plot each pair of observations (X, Y)
 - -x = predictor variable (independent)
 - -y = criterion variable (dependent)
- By convention:
 - the IV should be plotted on the x (horizontal) axis
 - -the DV on the y (vertical) axis.



Line of best fit

- The correlation between 2 variables is a measure of the degree to which pairs of numbers (points) cluster together around a best-fitting straight line
- Line of best fit: y = a + bx
- Check for:
 - -outliers
 - -linearity

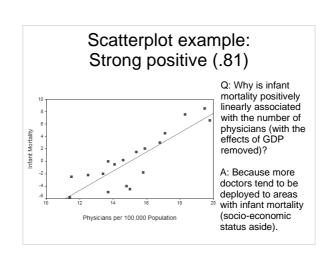
44

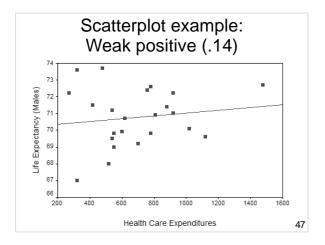
What's wrong with this scatterplot?

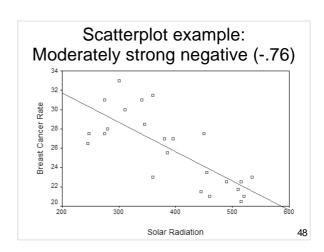
CORRELATION BETWEEN DRINKING
AND SPELLING ERRORS

IV should treated as X and DV as Y, although this is not always distinct.

Spelling Errors Made (per paragraph)







Pearson product-moment correlation (r)

 The product-moment correlation is the standardised covariance.

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{S_X S_Y}$$

49

51

53

Covariance

Variance shared by 2 variables

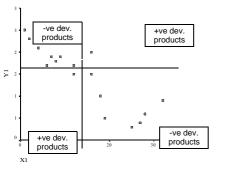
$$Cov_{XY} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{N - 1}$$
 Cross products

 Covariance reflects the direction of the relationship:

+ve cov indicates + relationship -ve cov indicates - relationship.

50

Covariance: Cross-products



Covariance

- Dependent on the scale of measurement → Can't compare covariance across different scales of measurement (e.g., age by weight in kilos versus age by weight in grams).
- Therefore, standardise covariance (divide by the cross-product of the Sds) → correlation
- Correlation is an effect size i.e., standardised measure of strength of linear relationship

Covariance, SD, and correlation: Quiz

For a given set of data the covariance between *X* and *Y* is 1.20. The *SD* of *X* is 2 and the *SD* of *Y* is 3. The resulting correlation is:

a. .20

b. .30

c. .40

d. 1.20

Answer:

 $1.20 / 2 \times 3 = .20$

Hypothesis testing

Almost all correlations are not 0, therefore the question is:

"What is the **likelihood** that a relationship between variables is a 'true' relationship - or could it simply be a result of random sampling variability or 'chance'?"

Significance of correlation

- Null hypothesis (H₀): ρ = 0: assumes that there is no 'true' relationship (in the population)
- Alternative hypothesis (H₁): ρ <> 0:
 assumes that the relationship is real
 (in the population)
- Initially assume H₀ is true, and evaluate whether the data support H₄.
- **ρ (rho)** = population product-moment correlation coefficient

55

57

How to test the null hypothesis

- Select a critical value (alpha (α)); commonly .05
- Can use a 1 or 2-tailed test
- Calculate correlation and its *p* value. Compare this to the critical value.
- If *p* < critical value, the correlation is statistically significant, i.e., that there is less than a x% chance that the relationship being tested is due to random sampling variability.

56

Correlation - SPSS output

Correlations				
		per Adult per	CHD Mortali ty per 10,000	
Cigarette Consumption pe	Pearson r Correlation			
Adult per Day	Sig. (2-tailed)			
	N			
CHD Mortality per 10,000	Pearson Correlation	.713*)	
	Sig. (2-tailed)	.000)	
	N	21		
**. Correlation is significant at the 0.01 level (2-tailed).				

Imprecision in hypothesis testing

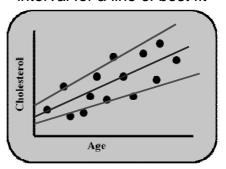
- Type I error: rejects H₀ when it is true
- Type II error: Accepts H₀ when it is false
- Significance test result will depend on the power of study, which is a function of:
 - -Effect size (r)
 - -Sample size (N)
 - -Critical alpha level (α_{crit})

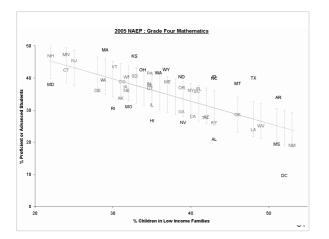
58

Significance of correlation

df	critical	
<u>(N-2)</u>	p = .05	
5	.67	The size of
10	.50	correlation
15	.41	
20	.36	required to be
25	.32	significant
30	.30	decreases as N
50	.23	increases -
200	.11	
500	.07	why?
1000	.05	59

Scatterplot showing a confidence interval for a line of best fit





Practice quiz question: Significance of correlation

- If the correlation between Age and test Performance is statistically significant, it means that:
- a. there is an important relationship between Age and test Performance
- b. the true correlation between Age and Performance in the population is equal to 0
- c. the true correlation between Age and Performance in the population is not equal to 0
- d. getting older causes you to do poorly on tests
 62

Interpreting correlation

63

65

Coefficient of Determination (r^2)

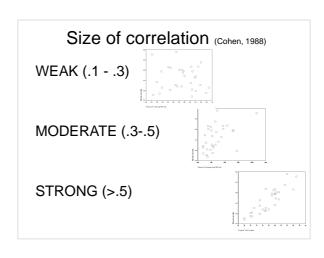
- CoD = The proportion of variance or change in one variable that can be accounted for by another variable.
- e.g., r = .60, $r^2 = .36$

64

Interpreting correlation (Cohen, 1988)

A correlation is an **effect size**, so guidelines re strength can be suggested.

Strength \underline{r} \underline{r}^2 weak:.1 to .3(1 to 10%)moderate:.3 to .5(10 to 25%)strong:>.5(> 25%)



Interpreting correlation (Evans, 1996)

 Strength
 r
 r²

 very weak
 0 - .19
 (0 to 4%)

 weak
 .20 - .39
 (4 to 16%)

 moderate
 .40 - .59
 (16 to 36%)

 strong
 .60 - .79
 (36% to 64%)

 very strong
 .80 - 1.00
 (64% to 100%)

67

69

Correlation of this scatterplot = -.9

Scale has no effect on correlation.

Correlation of this scatterplot = -.9

Scale has no effect on correlation.

X1

What do you estimate the correlation of this scatterplot of height and weight to be?

a. -.5
b. -1
c. 0
d. .5
e. 1

WEIGHT

WEIGHT

WHO IN THE CORREST TO T

What do you estimate the correlation of this scatterplot to be?

a. -.5
b. -1
c. 0
d. .5
e. 1

x

71

What do you estimate the correlation of this scatterplot to be?

a. -.5
b. -1
c. 0
d. .5
e. 1

Write-up: Example

"Number of children and marital satisfaction were inversely related (r(48) = -.35, p < .05), such that contentment in marriage tended to be lower for couples with more children. Number of children explained approximately 10% of the variance in marital satisfaction, a small-moderate effect (see Figure 1)."

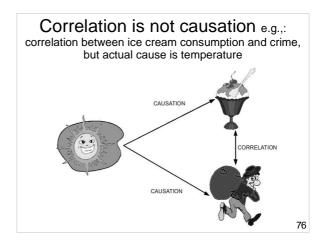
Assumptions and limitations (Pearson product-moment linear correlation)

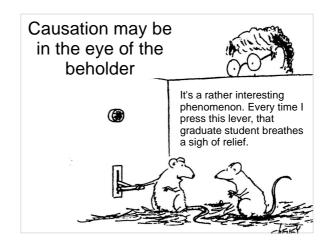
74

Assumptions and limitations

- 1. Levels of measurement ≥ interval
- 2. Correlation is not causation
- 3. Linearity
 - 1. Effects of outliers
 - 2. Non-linearity
- 4. Normality
- 5. Homoscedasticity
- 6. Range restriction
- 7. Heterogenous samples

75

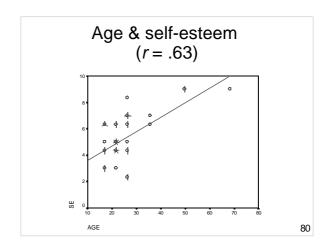


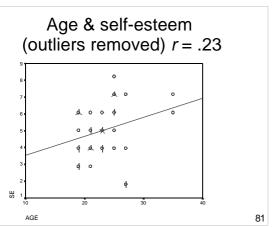


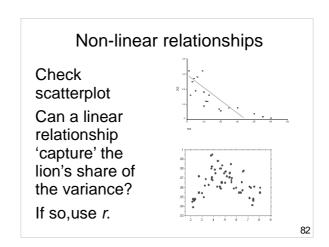
Effect of outliers

- Outliers can disproportionately increase or decrease *r*.
- Options
 - -compute r with & without outliers
 - -get more data for outlying values
 - recode outliers as having more conservative scores
 - -transformation
 - recode variable into lower level of measurement

79







Non-linear relationships

If non-linear, consider

- Does a linear relation help?
- Transforming variables to 'create' linear relationship
- Use a non-linear mathematical function to describe the relationship between the variables

Normality

- The X and Y data should be sampled from populations with normal distributions
- Do not overly rely on a single indicator of normality; use histograms, skewness and kurtosis, and inferential tests (e.g., Shapiro-Wilks)
- Note that inferential tests of normality are overly sensitive when sample is large

Homoscedasticity

- Homoscedasticity refers to even spread about a line of best fit
- Heteroscedasticity refers to uneven spread about a line of best fit
- Assess visually and with Levene's test

Homoscedasticity

Homoscedasticity with both variables normally distributed

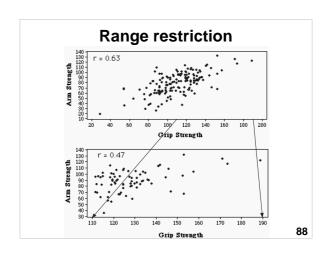
Heteroscedasticity with skewness on one variable

85

Range restriction

- Range restriction is when the sample contains restricted (or truncated) range of scores
 - -e.g., cognitive capacity and age < 18 might have linear relationship
- If range restriction, be cautious in generalising beyond the range for which data is available
 - -E.g., cognitive capacity does not continue to increase linearly with age after age 18

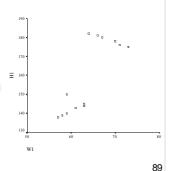
87

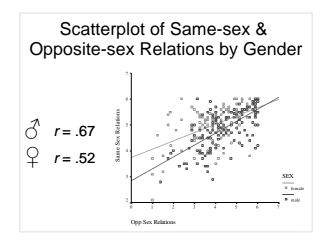


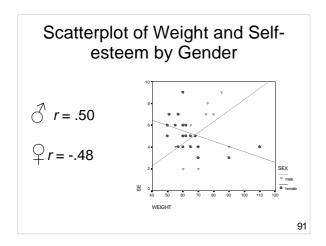
Heterogenous samples

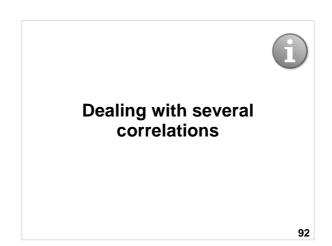
 Sub-samples (e.g., males & females) may artificially increase or decrease overall r.

 Solution - calculate separately for subsamples & overall, look for differences





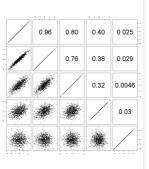




Dealing with several correlations

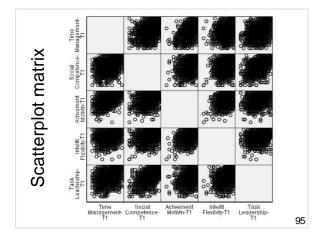
Scatterplot matrices organise scatterplots and correlations amongst several variables at once.

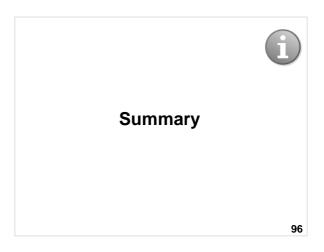
However, they are not detailed over for more than about five variables at a time.



93

Correlation matrix: Example of an APA Style **Correlation Table** Correlations Between Five Life Effectiveness Factors for Adolescents and Adults (N = 3640) Time Manage-ment Social Achieve-Intellectual .53 Time Management .31 .42 .32 .57 .41 Achievement Motivation .42 Intellectual Flexibility .37 Task Leadership 94





Key points

- 1. Covariations are the building blocks of more complex analyses, e.g., reliability analysis, factor analysis, multiple regression
- Correlation does not prove causation – may be in opposite direction, co-causal, or due to other variables.

97

Key points

- Choose measure of correlation and graphs based on levels of measurement.
- 4. Check graphs (e.g., scatterplot):
 - -Outliers?
 - -Linear?
 - -Range?
 - -Homoscedasticity?
 - -Sub-samples to consider?

98

Key points

- 5. Consider effect size (e.g., Φ , Cramer's V, r, r^2) and direction of relationship
- 6. Conduct inferential test (if needed).

99

Key points

- 7. Interpret/Discuss
 - Relate back to research hypothesis
 - Describe & interpret correlation (direction, size, significance)
 - Acknowledge limitations e.g.,
 - Heterogeneity (sub-samples)
 - Range restriction
 - Causality?

100

References

Evans, J. D. (1996). *Straightforward statistics for the behavioral sciences*. Pacific Grove, CA: Brooks/Cole Publishing.

Howell, D. C. (2007). *Fundamental statistics for the behavioral sciences*. Belmont, CA: Wadsworth.

Howell, D. C. (2010). *Statistical methods for psychology* (7th ed.). Belmont, CA: Wadsworth.

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

102