General Vector Space (3A)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Vector Space

V : non-empty set of objects
defined operations:

addition	$\mathbf{u}+\mathbf{v}$
scalar multiplication	$k \mathbf{u}$

if the following axioms are satisfied
for all object $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and all scalar k, m
V : vector space
objects in V : vectors

1. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in V, then $k \mathbf{u}$ is in V
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Test for a Vector Space

1. Identify the set V of objects
2. Identify the addition and scalar multiplication on V
3. Verify $\mathbf{u}+\mathbf{v}$ is in V and $k \mathbf{u}$ is in V
closure under addition and scalar multiplication
4. Confirm other axioms.
5. if \mathbf{u} and \mathbf{v} are objects in V, then $\mathbf{u}+\mathbf{v}$ is in V
6. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
7. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
8. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
9. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
10. if k is any scalar and \mathbf{u} is objects in V, then $k u$ is in V
11. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
12. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
13. $k(m \mathbf{u})=(k m) \mathbf{u}$
14. $1(\mathbf{u})=\mathbf{u}$

Subspace

a subset W of a vector space V

If the subset W is itself a vector space
the subset W is a subspace of V

1. if \mathbf{u} and \mathbf{v} are objects in W , then $\mathbf{u}+\mathbf{v}$ is in W
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
4. $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ (zero vector)
5. $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+(\mathbf{u})=\mathbf{0}$
6. if k is any scalar and \mathbf{u} is objects in W, then $k \mathbf{u}$ is in W
7. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
8. $(k+m) \mathbf{u}=k \mathbf{u}+m \mathbf{u}$
9. $k(m \mathbf{u})=(k m) \mathbf{u}$
10. $1(\mathbf{u})=\mathbf{u}$

Subspace Example (1)

Subspace Example (2)

Subspace Example (3)

In vector space R^{3}

any one vector	(linearly indep.)	spans	R^{1}	line through 0
any two non-collinear vectors	(linearly indep.)	spans	R^{2}	plane through 0
any three vectors non-collinear, non-coplanar any four or more vectors	(linearly indep.)	spans	R^{3}	3-dim space

Subspaces of R^{2}

line through 0

plane through 0

$$
R^{3}
$$

3-dim space

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & \\
\vdots & \vdots & & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & \\
a_{m n}
\end{array}\right) \\
& \text { ROW Space } \\
& \text { subspace of } R^{n} \\
& =\operatorname{span}\left\{\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}}, \cdots, \boldsymbol{r}_{\boldsymbol{m}}\right\} \\
& \text { COLUMN Space subspace of } R^{m} \\
& =\operatorname{span}\left\{\boldsymbol{C}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}}, \cdots, \boldsymbol{C}_{\boldsymbol{n}}\right\} \\
& \boldsymbol{c}_{\mathbf{1}} \quad \boldsymbol{c}_{\mathbf{2}} \quad \boldsymbol{c}_{\boldsymbol{n}} \quad \boldsymbol{c}_{\boldsymbol{i}} \in R^{m} \\
& \begin{array}{l}
\boldsymbol{r}_{\mathbf{1}}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right| \\
\boldsymbol{r}_{2}=\left|\begin{array}{cccc}
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right| \\
\boldsymbol{r}_{\boldsymbol{m}}=\mid
\end{array} \\
& r_{i} \in R^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & \\
\vdots & \vdots & & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & \\
a_{m n}
\end{array}\right) \\
& \text { ROW Space } \\
& \text { subspace of } R^{n} \\
& =\operatorname{span}\left\{\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}}, \cdots, \boldsymbol{r}_{\boldsymbol{m}}\right\} \\
& r_{i} \in R^{n} \\
& \boldsymbol{r}_{\mathbf{1}}=\left|\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right| \\
& \boldsymbol{r}_{2}=\left|\begin{array}{llll}
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right| \\
& r_{m}=\underset{\boldsymbol{n}}{\substack{a_{m 1} \\
a_{m 2} \\
a_{2}}} \\
& k_{1} \boldsymbol{r}_{1}+k_{2} \boldsymbol{r}_{2}+\cdots+k_{m} \boldsymbol{r}_{\boldsymbol{m}} \\
& =k_{1}\left|\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right| \\
& +k_{2}\left|\begin{array}{llll}
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right| \\
& +k_{m}\left|\begin{array}{ccc}
a_{m 1} & a_{m 2} & \cdots
\end{array} a_{m n}\right|
\end{aligned}
$$

Column Spaces

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & \\
\vdots & \vdots & & a_{2 n} \\
a_{m 1} & a_{m 2} & \cdots & \\
a_{m n}
\end{array}\right) \\
& \text { COLUMN Space subspace of } R^{m} \\
& =\operatorname{span}\left\{\boldsymbol{C}_{\mathbf{1}}, \boldsymbol{C}_{\mathbf{2}}, \cdots, \boldsymbol{C}_{\boldsymbol{n}}\right\} \\
& k_{1} \boldsymbol{C}_{1}+k_{2} \boldsymbol{C}_{2}+\cdots+k_{n} \boldsymbol{C}_{n} \\
& \boldsymbol{c}_{\boldsymbol{i}} \in R^{m} \boldsymbol{c}_{\mathbf{1}} \quad \boldsymbol{c}_{\mathbf{2}} \quad \boldsymbol{c}_{\boldsymbol{n}} \\
& \boldsymbol{m} \stackrel{\wedge}{\wedge}\left(\begin{array}{c|c|c|c}
a_{11} \\
a_{21} \\
\vdots & a_{12} & \cdots & a_{1 n} \\
a_{m 1}
\end{array}\right) \\
& =k_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+k_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right) \ldots+k_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{aligned}
$$

Null Space

$$
\begin{aligned}
& \boldsymbol{m}\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)\left\|_{\nabla} \boldsymbol{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)\right\|_{\nabla} \boldsymbol{n} \quad \text { subL Space } \quad \text { solution space } R^{n} \\
& =\left(\begin{array}{cccc}
a_{11} x_{1}+a_{12} x_{2}+ & \cdots & a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+ & \cdots & a_{2 n} x_{n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+ & \cdots & a_{m n} x_{n}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right) \cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right) \\
& \text { Ax }=x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=0 \\
& A x=0 \\
& A x=x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=b \\
& \boldsymbol{A x}=\boldsymbol{b}
\end{aligned}
$$

Null Space

NULL Space \quad subspace of R^{n}
solution space $\quad A x=0$
Invertible A
$x=A^{-1} 0=0$
only trivial solution
Non-invertible A zero row(s) in a RREF free variables parameters s, t, u, \ldots
A^{-1}

one	one
two	two
three	three

a line through the origin	R^{1}
a plane through the origin	R^{2}
a 3-dim space through the origin	R^{3}

Solution Space of $\mathbf{A x}=\mathbf{b}$ (1)

	0	0			0		-1	1	-5	1		
0	1	2					2	0	0			
0	0	0			0	0	0	0	0			
$0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1$ $1\left(x_{1}\right)$ $+3 \cdot x_{3}=-1$ $1 \cdot\left(x_{1}\right)-5 \cdot x_{2}+1 \cdot x_{3}=4$ $1\left(x_{2}\right)-4 \cdot x_{3}=2$												

Solve for a leading variable

$$
\begin{array}{ll}
x_{1}=-1-3 \cdot x_{3} & x_{1}=4+5 \cdot x_{2}-1 \cdot x_{3} \\
x_{2}=2+4 \cdot x_{3} &
\end{array}
$$

Treat a free variable as a parameter

$$
x_{3}=t
$$

$$
x_{2}=s \quad x_{3}=t
$$

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

$$
\begin{aligned}
& x_{1}=4+5 s-1 t \\
& x_{2}=s \\
& x_{3}=t
\end{aligned}
$$

Solution Space of $\mathbf{A x}=\mathbf{b}$ (2)

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t \quad \text { free variable }
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}=4+5 s-1 t \\
x_{2}=s \quad \text { free variable } \\
x_{3}=t \quad \text { free variable }
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

infinitely many solutions

infinitely many solutions

Solution Space of $\mathbf{A x}=\mathbf{b}$ (3)

$\left[\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left(\begin{array}{ccc|c}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0 \\
\hline
\end{array}\right)
$$

$\left(\begin{array}{ccc|c}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]
$$

General
Solution of
Ax $=b$

Particular General
Solution of Solution of
$\boldsymbol{A x}=\boldsymbol{b} \quad \boldsymbol{A x}=0$

$$
\left\{\begin{array}{l}
x_{1}=4+5 s-1 t \\
x_{2}=s \\
x_{3}=t
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Particular General
Solution of Solution of
$\boldsymbol{A x}=\boldsymbol{b} \quad \boldsymbol{A x}=\mathbf{0}$

Solution Space of $\mathbf{A x}=\mathbf{b}$ (3)

$\left[\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left(\begin{array}{ccc|c}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0 \\
\hline
\end{array}\right)
$$

$\left(\begin{array}{ccc|c}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]
$$

General
Solution of
Ax $=\boldsymbol{b}$

Particular General
Solution of Solution of
$\boldsymbol{A x}=\boldsymbol{b} \quad \boldsymbol{A x}=0$

$$
\left\{\begin{array}{l}
x_{1}=4+5 s-1 t \\
x_{2}=s \\
x_{3}=t
\end{array}\right.
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Particular General
Solution of Solution of
$\boldsymbol{A x}=\boldsymbol{b} \quad \boldsymbol{A x}=\mathbf{0}$

Linear System \& Inner Product (1)

Linear Equations

Corresponding Homogeneous Equation

$$
\begin{aligned}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} & =0 \\
\text { normal vector } \quad \boldsymbol{a} \cdot \boldsymbol{x} & =b \\
-\boldsymbol{a} \cdot \boldsymbol{x} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{a}=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \\
& \boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)
\end{aligned}
$$

each solution vector \boldsymbol{X} of a homogeneous equation orthogonal to the coefficient vector \boldsymbol{a}

Homogeneous Linear System

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 & \boldsymbol{r}_{1} \cdot \boldsymbol{x}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 & \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0 \\
\cdots \cdots \cdots & \cdots \\
\cdots \cdots+a_{m n} x_{n}=0 & \boldsymbol{r}_{\boldsymbol{m}} \cdot \boldsymbol{x}=0
\end{array}
$$

Linear System \& Inner Product (2)

Homogeneous Linear System

$$
\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 & \boldsymbol{r}_{1} \cdot \boldsymbol{x}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 & \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0 \\
\cdots \cdots \cdots & \cdots \\
\cdots \cdots+a_{m n} x_{n}=0 & \boldsymbol{r}_{\boldsymbol{m}} \cdot \boldsymbol{x}=0
\end{array}
$$

each solution vector \boldsymbol{X} of a homogeneous equation orthogonal to the row vector $\boldsymbol{r}_{\boldsymbol{i}}$ of the coefficient matrix

Homogeneous Linear System $\quad \boldsymbol{A} \cdot \boldsymbol{x}=0 \quad \boldsymbol{A}: m \times n$
solution set consists of all vectors in R^{n}
that are orthogonal to every row vector of \boldsymbol{A}

Linear System \& Inner Product (3)

Non-Homogeneous Linear System
Homogeneous Linear System

$$
\begin{array}{rlr}
\boldsymbol{A} \cdot \boldsymbol{x} & =b & \boldsymbol{A}: m \times n \\
\boldsymbol{A} \cdot \boldsymbol{x} & =0 &
\end{array}
$$

solution set consists of all vectors in R^{n}
a particular solution
$A \cdot \boldsymbol{x}=b$
that are orthogonal to every row vector of \boldsymbol{A}
$+$
$\begin{array}{lll}\text { a particular solution } & \boldsymbol{x}_{0} & \boldsymbol{A} \cdot \boldsymbol{x}_{\mathbf{0}}=b\end{array}$

Linear System \& Inner Product (4)

$\left(\begin{array}{lll|l}1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{lll|l}1 & 0 & 3 & -1 \\ 0 & 1 & -4 & 2 \\ 0 & 0 & 0 & 0\end{array}\right] \quad\left(\begin{array}{lll|l}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

2

$$
\begin{aligned}
& \boldsymbol{r}_{\mathbf{1}} \cdot \boldsymbol{x}=0 \\
& \boldsymbol{r}_{2} \cdot \boldsymbol{x}=0
\end{aligned}
$$

3
1 a line through the origin R^{1}

$$
\left\{\begin{array}{l}
x_{1}=-1-3 t \\
x_{2}=2+4 t \\
x_{3}=t
\end{array}\right.
$$

1

$$
\boldsymbol{r}_{1} \cdot \boldsymbol{x}=0
$$

2 a plane through the origin R^{2}

$$
\left\{\begin{array}{l}
x_{1}=4+5 s-1 t \\
x_{2}=s \\
x_{3}=t
\end{array}\right.
$$

Consistent Linear System $\mathbf{A x}=\mathbf{b}$

$\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & \\ \vdots & \vdots & & a_{2 n} \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{ccc}a_{11} x_{1}+a_{12} x_{2}+ & \cdots & a_{1 n} x_{n} \\ a_{21} x_{1}+a_{22} x_{2}+ & \cdots & a_{2 n} x_{n} \\ \vdots & \vdots & \\ a_{m 1} x_{1}+a_{m 2} x_{2}+ & \cdots & a_{m n} x_{n}\end{array}\right)$
$\boldsymbol{A x}=\boldsymbol{b} \quad$ consistent $\quad \Rightarrow$
$x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=b$
expressed in linear combination of column vectors
\boldsymbol{b} is in the column space of \boldsymbol{A}

$$
=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right) \cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
$$

$$
A x=x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=b
$$

Dimension

In a finite-dimensional vector space $\quad R^{n} \quad R^{\infty}$

many bases but the same number of basis vectors
basis $\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}\right\} \quad R^{2}$

basis $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\} \quad R^{2}$

basis $\left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}}\right\} \quad R^{2}$

The dimension of a finite-dimensional vector space V
$\operatorname{dim}(\mathrm{V})$
the number of vectors in a basis

Dimension of a Basis (1)

In vector space
R^{2}

basis	any one vector	(linearly indep.)	spans	R^{2}	line through 0
	any two non-collinear vectors	(linearly indep.)	spans	R^{2}	plane
	any three or more vectors	(linearly indep.)	spans	R^{2}	plane
	In vector space R^{3}				
basis	any one vector	(linearly indep.)	spans	R^{3}	line through 0
	any two non-collinear vectors	(linearly indep.)	spans	R^{3}	plane through 0
	any three vectors non-collinear, non-coplanar	(linearly indep.)	spans	R^{3}	3-dim space
	any four or more vectors	(linearty indep.)	spans	R^{3}	3-dim space

Dimension of a Basis (2)

In vector space R^{n}

any $\mathrm{n}-1$ vectors		(linearly indep.)?	spans R^{n}	line through $\mathbf{0}$
basis n vectors of a basis	(linearly indep.)	spans	R^{n}	plane
any $n+1$ vectors	(linearly indep.)	spans? R^{n}	plane	

$$
\begin{aligned}
& \text { a finite-dimensional vector space } V \\
& \text { a basis } \quad\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \\
& \begin{cases}\text { a set of more than } \mathrm{n} \text { vectors } & \square \\
\text { a set of less than } \mathrm{n} \text { vectors } & \square \\
\text { (linearly indep.) } \\
\text { spans } V\end{cases}
\end{aligned}
$$

$S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \quad$ non-empty finite set of vectors in V
S is a basis

S linearly independent
S spans V

Basis Test

$$
\begin{aligned}
& S=\left\{\boldsymbol{v}_{\boldsymbol{1}}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \quad \begin{array}{l}
\text { non-empty finite set of vectors in } V \\
S \text { is a basis }
\end{array} \Rightarrow\left\{\begin{array}{l}
S \text { linearly independent } \\
S \text { spans } V
\end{array}\right.
\end{aligned}
$$

$V \quad$ an n -dimensional vector space
$S=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \cdots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ a set of \boldsymbol{n} vectors in V
S linearly independent $\square S$ is a basis
S spans $V \quad \square \quad S$ is a basis

Plus / Minus Theorem

S a nonempty set of vectors in a vector space V
$\left\{\begin{array}{l}S \text { : linear independent } \\ \boldsymbol{v} \text { a vector in V but outside of span(S) }\end{array}\right.$
$\left\{\begin{array}{l}\boldsymbol{v}, \boldsymbol{u}_{i} \in S \quad \text { linear combination } \\ \boldsymbol{v}=k_{1} \boldsymbol{u}_{1}+k_{2} \boldsymbol{u}_{2}+\cdots+k_{n} \boldsymbol{u}_{n}\end{array} \Rightarrow \operatorname{span}(S)=\operatorname{span}(S-\{\boldsymbol{v}\})\right.$: linear independent

Finding a Basis

S a nonempty set of vectors in a vector space

```V
```

S : linear independent

- $S \cup\{\boldsymbol{v}\}$: linear independent

\boldsymbol{v} a vector in V but outside of span(S)
if S is a linearly independent set that is not already a basis for V , then S can be enlarged to a basis for V
by inserting appropriate vectors into S
$\boldsymbol{v}, \boldsymbol{u}_{\boldsymbol{i}} \in S \quad$ linear combination

$$
\Rightarrow \operatorname{span}(S)=\operatorname{span}(S-\{\boldsymbol{v}\})
$$

$\boldsymbol{v}=k_{1} \boldsymbol{u}_{1}+k_{2} \boldsymbol{u}_{2}+\cdots+k_{n} \boldsymbol{u}_{\boldsymbol{n}}$
if S spans V but is not a basis for V , then S can be reduced to a basis for V by removing appropriate vectors from S

Vectors in a Vector Space

S a nonempty set of vectors in a vector space V
if S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V
by inserting appropriate vectors into S

Every linearly independent set in a subspace is either a basis for that subspace or can be extended to a basis for it
if S spans V but is not a basis for V, then S can be reduced to a basis for V
by removing appropriate vectors from S

Every spanning set for a subspace is either a basis for that subspace or has a basis as a subset

Dimension of a Subspace

W a subspace of a finite-dimensional vector space V

W is finite-dimensional

$\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{V})$
$W=V \quad \Rightarrow \quad \operatorname{dim}(W)=\operatorname{dim}(V)$

Rank and Nullity

$\operatorname{dim}($ row space of $A)=\operatorname{dim}($ column space of $A)=\operatorname{rank}(A)$ $\operatorname{dim}($ null space of $A)=$ nullity (A)

References

[1] http://en.wikipedia.org/
[2] Anton, et al., Elementary Linear Algebra, 10 ${ }^{\text {th }}$ ed, Wiley, 2011
[3] Anton, et al., Contemporary Linear Algebra,

