DFT Matrix Examples (DFT.2.A)

Copyright (c) 2009, 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

DFT Matrix Elements

$$
\left.X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N k \hbar} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k \hbar}\right]
$$

$$
\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]
\end{array}\right]
$$

$$
e^{-j\left(\frac{2 \pi}{N}\right) k n}
$$

$$
=e^{-j\left(\frac{2 \pi}{N}\right)(k n \bmod N)}
$$

$$
=\cos \left(\frac{2 \pi}{N} k n\right)-j \sin \left(\frac{2 \pi}{N} k n\right)
$$

Rows of a DFT Matrix

$$
e^{-j\left(\frac{2 \pi}{N}\right) k n} \in\left\{e^{-j\left(\frac{2 \pi}{N}\right) \cdot 0}, \quad e^{-j\left(\frac{2 \pi}{N}\right) \cdot 1}, \quad e^{-j\left(\frac{2 \pi}{N}\right) \cdot 2}, \quad \cdots \quad e^{-j\left(\frac{2 \pi}{N}\right)(N-1)}\right\}
$$

Graphical Representation of a DFT Matrix

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \operatorname{Re}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(\frac{2 \pi}{8} k n\right) \\
& \cdots \cdots \cdots \cdots \operatorname{Im}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(\frac{2 \pi}{8} k n\right)
\end{aligned}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

