DFT Matrix Properties (3A)

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

N=8 D「丁 Matrix

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

$\mathrm{N}=8$ ID F「丁 Matrix

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

Symmetric Matrices

$\boldsymbol{A}=\boldsymbol{A}^{T}$

DFT

$$
\boldsymbol{B}=\boldsymbol{B}^{T}
$$

IDF

Conjugate Transpose Matrices

$$
\boldsymbol{A}=\boldsymbol{B}^{H} \quad \Rightarrow \quad \boldsymbol{A}=\boldsymbol{B}^{*}
$$

$$
\boldsymbol{B}=\boldsymbol{A}^{H} \quad \Rightarrow \boldsymbol{B}=\boldsymbol{A}^{*}
$$

Product AB

$$
\boldsymbol{A} \cdot \boldsymbol{B} \Rightarrow \boldsymbol{A} \cdot \boldsymbol{A}^{H} \Rightarrow \boldsymbol{A} \cdot \boldsymbol{A}^{*} \Rightarrow N \boldsymbol{I}
$$

DFT IDFT

Unitary Matrix

$$
\begin{gathered}
\text { C } \begin{aligned}
\boldsymbol{C}=\boldsymbol{A} \cdot \boldsymbol{B} & =\boldsymbol{A} \cdot \boldsymbol{A}^{H} \\
& =\boldsymbol{A} \cdot \boldsymbol{A}^{*}={ }_{N} \boldsymbol{I}
\end{aligned} \\
\begin{aligned}
\boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I} \quad \text { Unitary Matrix }
\end{aligned}
\end{gathered}
$$

Symmetric Matrices

DFT Matrix in the row-wise view
DFT Matrix in the column-wise view

IDFT Matrix in the row-wise view

IDFT Matrix in the column-wise view

Conjugate Transpose Matrices

$\boldsymbol{A}=\boldsymbol{B}^{H} \quad \Rightarrow \quad \boldsymbol{A}=\boldsymbol{B}^{*} \quad-$ Real \quad - Imaginary

$$
\boldsymbol{B}=\boldsymbol{A}^{H}
$$

$\boldsymbol{B}=\boldsymbol{A}^{*}$
Real - - Imaginary

Product AB

DFT

IDFT

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

