Sampling Basics(1B)

-

\bullet

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Measuring Rotation Rate

Angular Speed (Frequency)

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

$+\omega_{0} \mathrm{rad} / 1 \mathrm{sec}-\omega_{0} \mathrm{rad} / 1 \mathrm{sec}$
$+\omega_{0}(\mathrm{rad} / \mathrm{sec})$

$$
-\omega_{0}(\mathrm{rad} / \mathrm{sec})
$$

RPM

$$
\text { rpm }=\text { revolutions } / \text { minute }
$$

$$
1 \mathrm{rpm}=2 \pi \mathrm{rad} / 1 \mathrm{~min}
$$

$$
=2 \pi \mathrm{rad} / 60 \mathrm{sec}
$$

$$
=\frac{\pi}{30} \mathrm{rad} / \mathrm{sec}
$$

- Negative Angles

Angular Frequency and Sinusoid

Time Domain

- T_{0}

$$
\omega_{0}=\frac{2 \pi}{T_{0}}
$$

Frequency Domain

For 1 second For 1 second

$$
x(t)=A \cos \left(\omega_{0} t\right)
$$

$$
=\frac{A}{2} e^{j \omega_{0} t}+\frac{A}{2} e^{-j \omega_{0} t}
$$

Angular Speed Examples

Angular Speed and Frequency

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

$T(\mathrm{sec})$	0.01 sec	0.1 sec	1 sec	10 sec	100 sec
$f(\mathrm{~Hz})$	100 Hz	10 Hz	1 Hz	0.1 Hz	0.01 Hz
ω $(\mathrm{rad} / \mathrm{sec})$	200π $(\mathrm{rad} / \mathrm{sec})$	20π $(\mathrm{rad} / \mathrm{sec})$	2π $(\mathrm{rad} / \mathrm{sec})$	0.2π $(\mathrm{rad} / \mathrm{sec})$	0.02π $(\mathrm{rad} / \mathrm{sec})$
	$=628$	$=62.8$	$=6.28$	$=0.628$	$=0.0628$

Sampling

continuous-time signals

$$
x(t)=A \cos \left(\omega_{0} t\right)
$$

discrete-time sequence

Sampling Time

$$
T_{s}(=\tau)
$$

Sequence Time Length

$$
T=N \cdot T_{s}
$$

Sampling Frequency

$$
f_{s}=\frac{1}{T_{s}}(\text { samples } / \text { sec })
$$

Signal's Frequency

$$
f_{0}=\frac{1}{T_{0}} \quad(\text { cycles } / \text { sec })
$$

Sampling Frequency

continuous-time signals

$x(t)=A \cos \left(\omega_{0} t\right)$

> For 1 second
> $\frac{1}{T_{s}} \quad($ samples $/$ sec $)$

For 1 sample
1 (samples) / T_{s} (sec)

For 1 second
$\frac{1}{T_{0}} \quad($ cycles $/$ sec $)$
For 1 cycle
1 (cycles) / T_{s} (sec)

Sampling Time

$$
T_{s}(=\tau)
$$

Sequence Time Length

$$
T=N \cdot T_{s}
$$

Sampling Frequency

$$
f_{s}=\frac{1}{T_{s}}(\text { samples } / \text { sec })
$$

Signal's Frequency

$$
f_{0}=\frac{1}{T_{0}} \quad(\text { cycles } / \text { sec })
$$

Angular Frequencies in Sampling

$$
\begin{aligned}
& x(t)=A \cos \left(\omega_{0} t\right) \\
& \omega_{0}=2 \pi f_{0} \\
& f_{0}=\frac{1}{T_{0}} \\
& \begin{array}{cccccccc}
\triangle & \Delta & \Delta & \Delta & \Delta & \Delta & \Delta & \Delta
\end{array} \\
& \omega_{s}=2 \pi f_{s} \quad f_{s}=\frac{1}{T_{s}}
\end{aligned}
$$

continuous-time signals

For 1 second
$\omega_{0}=2 \pi f_{0}(\mathrm{rad} / \mathrm{sec})$

For 1 revolution
$2 \pi(\mathrm{rad}) / T_{0}(\mathrm{sec})$

sampling sequence

For 1 second
$\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})$

For 1 revolution
$2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec})$

Dimensionless Sequence

$$
x[n] \Rightarrow \cdots, x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], \cdots
$$

$$
\begin{aligned}
& \text { Infinite number of } \\
& \text { continuous time signals }
\end{aligned}
$$

Sampling

The same discretetime sequence

Sampling of Sinusoid Functions

$$
\begin{aligned}
x(t) & =A \cos (\omega t+\phi) \\
x[n] & =x\left(n T_{s}\right) \\
& =A \cos \left(\omega \cdot n T_{s}+\phi\right) \\
& =A \cos \left(\omega \cdot T_{s} n+\phi\right) \\
& =A \cos (\hat{\omega} \cdot n+\phi)
\end{aligned}
$$

$$
\hat{\omega}=\omega \cdot T_{s}=\frac{\omega}{1 / T_{s}}
$$

$$
\begin{gathered}
\hat{\omega}=\frac{\omega}{\frac{f_{s}}{}}=2 \pi \frac{f}{\frac{f_{s}}{}} \\
\quad \text { Normalized to } f_{s}
\end{gathered}
$$

Normalized Radian Frequency

Normalized Radian Frequency (1)

continuous-time signals
$x(t)$
Angular Frequency
$\omega(\mathrm{rad} / \mathrm{sec})$

Sampling

$$
t \rightarrow n T_{s}
$$

Sampling

$$
\times T_{s}
$$

$$
\begin{aligned}
& \text { discrete-time sequence } \\
& \qquad x[n]=x\left(n T_{s}\right)
\end{aligned}
$$

Normalized Radian Frequency
$\hat{\omega}=\omega \cdot T_{s}($ rad $/$ sample $)$

Angular Speed X Sampling Time

- Negative Angles
\rightarrow folding
- Co-terminal Angles
\rightarrow periodic

Normalized Radian Frequency
can be viewed as
"the angular displacement of a signal during the period of its sample time T_{s} "

Normalized Radian Frequency (2)

Normalized Radian Frequency (3)

Normalized Radian Frequency (4)

$$
\begin{aligned}
& x(t)=A \cos \left(\omega_{0} t\right) \\
& \omega_{0}=2 \pi f_{0} \\
& f_{0}=\frac{1}{T_{0}} \\
& \omega_{s}=2 \pi f_{s} \\
& f_{s}=\frac{1}{T_{s}}
\end{aligned}
$$

$$
\hat{\omega}=+\pi(\mathrm{rad} / \text { sample })
$$

$$
\hat{\omega}=-\pi(\mathrm{rad} / \text { sample })
$$

Sampling

$$
\hat{\omega}_{n}
$$

Sampling

$\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec}) \quad A \cos \left(\omega_{1} t+\phi\right) \quad A \cos \left(\omega_{2} t+\phi\right)$

$$
\omega_{1}=\frac{\omega_{s}}{2}
$$

$$
\omega_{2}=\frac{\omega_{s}}{4}
$$

$2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec})$
$\hat{\omega}=\pi(\mathrm{rad})$
$\hat{\omega}=\frac{\pi}{2}(\mathrm{rad})$

- Negative Angles

$$
\begin{array}{ll}
\hat{\omega}=-\pi(\mathrm{rad}) & \hat{\omega}=-\frac{3 \pi}{2}(\mathrm{rad}) \\
\omega_{1}=-\frac{\omega_{s}}{2} & \omega_{2}=-\frac{3 \omega_{s}}{2}
\end{array}
$$

Sampling

$\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec}) \quad A \cos \left(\omega_{1} t+\phi\right) \quad A \cos \left(\omega_{2} t+\phi\right)$

$$
\omega_{1}=\frac{\omega_{s}}{2}
$$

$$
\hat{\omega}=\pi(\mathrm{rad})
$$

$$
\hat{\omega}=\pi+2 \pi(\mathrm{rad})
$$

$$
\omega_{1}=\frac{\omega_{s}}{2}+\omega_{s}
$$

$$
\hat{\omega}=\frac{\pi}{2}+2 \pi(\mathrm{rad})
$$

$$
\omega_{2}=\frac{\omega_{s}}{4}+\omega_{s}
$$

Sampling

Sampling

$$
\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})
$$

$$
\begin{array}{ll}
\omega_{1}=2 \pi f_{1} & \omega_{2}=2 \pi f_{2} \\
\omega_{1}=\frac{\omega_{s}}{2}(\mathrm{rad} / \mathrm{sec}) & \omega_{2}=-\frac{\omega_{s}}{2}(\mathrm{rad} / \mathrm{sec}) \\
f_{1}=\frac{f_{s}}{2}(\mathrm{rad} / \mathrm{sec}) & f_{2}=-\frac{f_{s}}{2}(\mathrm{rad} / \mathrm{sec})
\end{array}
$$

$$
2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
\pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
-\pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

Sampling

$\omega_{1}=2 \pi f_{1}(\mathrm{rad} / \mathrm{sec})$

$$
\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})
$$

For the period of T_{s}

$$
2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec}) \quad \frac{\pi}{2}(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
\text { Angular displacement } \quad \frac{\pi}{2}(\mathrm{rad})
$$

$$
\begin{aligned}
\hat{\omega} & =\omega \cdot T_{s}(\mathrm{rad}) \\
& =2 \pi f_{1} \cdot T_{s}(\mathrm{rad}) \\
& =2 \pi \frac{f_{s}}{4} \cdot T_{s}(\mathrm{rad}) \\
& =\frac{\pi}{2}(\mathrm{rad})
\end{aligned}
$$

Angular Frequencies in Sampling

continuous-time signals

Signal Frequency

$$
f_{0}=\frac{1}{T_{0}}
$$

Signal Angular Frequency

$$
\omega_{0}=2 \pi f_{0}(\mathrm{rad} / \mathrm{sec})
$$

sampling sequence

Sampling Frequency

$$
f_{s}=\frac{1}{T_{s}}
$$

For 1
secən $2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})$

For 1
Pevblartioh $T_{0}(\mathrm{sec})$

For 1 revbluatioh $T_{s}(\mathrm{sec})$

Sampling Angular Frequency

$$
\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

