DFT Matrix Properties (3B)

- X[1]
- X[2]
- X[3]
- X[4]
- X[5]
- X[6]
- X[7]

Copyright (c) 2009, 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

$\mathrm{N}=8$ D「丁

$$
\begin{gathered}
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \\
\\
{\left[\begin{array}{l}
x[0] \\
X[1] \\
X[2] \\
X[3] \\
X[4] \\
X[5] \\
X[5] \\
X[6] \\
X[7]
\end{array}\right]=\left[\begin{array}{llllllll}
W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{8} & W_{8}^{10} & W_{8}^{12} & W_{8}^{14} \\
W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{9} & W_{8}^{12} & W_{8}^{15} & W_{8}^{18} & W_{8}^{21} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{8} & W_{8}^{12} & W_{8}^{16} & W_{8}^{20} & W_{8}^{24} & W_{8}^{28} \\
W_{8}^{0} & W_{8}^{5} & W_{8}^{10} & W_{8}^{15} & W_{8}^{20} & W_{8}^{25} & W_{8}^{30} & W_{8}^{35} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{12} & W_{8}^{18} & W_{8}^{24} & W_{8}^{30} & W_{8}^{36} & W_{8}^{42} \\
W_{8}^{0} & W_{8}^{7} & W_{8}^{14} & W_{8}^{21} & W_{8}^{28} & W_{8}^{35} & W_{8}^{42} & W_{8}^{49}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right]}
\end{gathered}
$$

$\mathrm{N}=8 \mathrm{IDFT}$

$$
x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
$$

$\left[\begin{array}{l}x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \\ x[6] \\ x[7]\end{array}\right]=\frac{1}{N}\left[\begin{array}{llllllll}W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{-1} & W_{8}^{-2} & W_{8}^{-8} & W_{8}^{-4} & W_{8}^{-8} & W_{8}^{-8} & W_{8}^{-7} \\ W_{8}^{0} & W_{8}^{-2} & W_{8}^{-4} & W_{8}^{-6} & W_{8}^{-8} & W_{8}^{-10} & W_{8}^{-12} & W_{8}^{-14} \\ W_{8}^{0} & W_{8}^{-3} & W_{8}^{-6} & W_{8}^{-9} & W_{8}^{-12} & W_{8}^{-15} & W_{8}^{-18} & W_{8}^{-21} \\ W_{8}^{0} & W_{8}^{-4} & W_{8}^{-8} & W_{8}^{-12} & W_{8}^{-18} & W_{8}^{-20} & W_{8}^{-24} & W_{8}^{-8} \\ W_{8}^{0} & W_{8}^{-5} & W_{8}^{-10} & W_{8}^{-15} & W_{8}^{-20} & W_{8}^{-25} & W_{8}^{-30} & W_{8}^{-35} \\ W_{8}^{0} & W_{8}^{-6} & W_{8}^{-12} & W_{8}^{-18} & W_{8}^{-24} & W_{8}^{-30} & W_{8}^{-36} & W_{8}^{-2} \\ W_{8}^{0} & W_{8}^{-7} & W_{8}^{-14} & W_{8}^{-21} & W_{8}^{-28} & W_{8}^{-35} & W_{8}^{-42} & W_{8}^{-49}\end{array}\right]\left[\begin{array}{c}X[1] \\ X[2] \\ X[4] \\ X[6] \\ X[7]\end{array}\right]$

$\mathrm{N}=8 \mathrm{D} \Gamma \mathrm{F}$ Matrix (1)

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

N=8 ID F「 Matrix (1)

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

Symmetric DFT Matrix - Index (1)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

Symmetric DFT Matrix - Index (2)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

Symmetric DFT Matrix - Index (3)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

	$\mathrm{n}=0$	$\mathrm{n}=1$	$\mathrm{n}=2$			$\mathrm{n}=\mathrm{N}-1$		
$\mathrm{k}=0$	$0 \cdot 0$	${ }^{0} \cdot 1$	$0_{1} i^{2}+2$			$0 \cdot(x-1)$		
$\mathrm{k}=1$	$1 \cdot 0$	${ }_{1}{ }^{1} 1$	${ }_{1} \mathrm{i}^{2}$			$1 \cdot\left(\begin{array}{l}1-1(1)\end{array}\right.$		$\boldsymbol{A}=\boldsymbol{A}^{T}$
$\mathrm{k}=2$	2.0.0 +0	$2 \cdot 1$	$2 \cdot 2$			$2 \cdot(1-1)$		$\boldsymbol{B}=\boldsymbol{B}^{T}$
-	$1+0$	+1	+2					$\boldsymbol{B}=\boldsymbol{B}$
-	-	\bullet	-			-		
-	i +0	ii +1	i +2			$0{ }^{-1+(x)-1)}$		
$\mathrm{k}=\mathrm{N}-1$	$(N-1) \cdot 0$	($N-1$) $\cdot 1$	($\mathrm{N}-1$) 2			$(N-1) \cdot(N-1)$		

$$
+\mathbf{0}(\bmod N) \quad+\mathbf{1}(\bmod N) \quad+\mathbf{2}(\bmod N)
$$

$+\mathbf{N} \mathbf{- 1}(\bmod N)$

Exponents in DFT matrix \mathbf{A} and IDFT matrix B

Conjugate Transpose DFT Matrix

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \Rightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2 \pi / N) k n}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
X[0] \\
X[1] \\
X[2] \\
\vdots \\
X[N-1]
\end{array}\right]=\left[\begin{array}{l}
\mathbf{n} \\
\\
e^{-j\left(\frac{2 \pi}{N}\right) k n}
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]
\end{array}\right]=\frac{1}{N}\left[\begin{array}{l}
\mathbf{n} \\
\\
e^{+j\left(\frac{2 \pi}{N}\right) k n}
\end{array}\right]\left[\begin{array}{l}
X[0] \\
X[1] \\
X[2] \\
\vdots \\
X[N-1]
\end{array}\right]} \\
& \left\{\begin{array} { l }
{ \boldsymbol { A } = \boldsymbol { A } ^ { T } } \\
{ \boldsymbol { B } = \boldsymbol { B } ^ { T } }
\end{array} \quad \left\{\begin{array} { l }
{ \boldsymbol { A } ^ { * } = \boldsymbol { B } } \\
{ \boldsymbol { B } ^ { * } = \boldsymbol { A } }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\boldsymbol{A}^{\boldsymbol{H}}=\boldsymbol{B} \\
\boldsymbol{B}^{\boldsymbol{H}}=\boldsymbol{A}
\end{array}\right.\right.\right.
\end{aligned}
$$

Product of DFT \& IDFT Matrix

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

$$
\left\{e^{-j\left(\frac{2 \pi}{N}\right) k \cdot 0}, \quad e^{-j\left(\frac{2 \pi}{N}\right) k \cdot 1}, \quad \cdots \quad, \quad e^{-j\left(\frac{2 \pi}{N}\right) k \cdot(N-1)}\right\}
$$

Inner product

$$
e^{-j\left(\frac{2 \pi}{N}\right)(n-k) \cdot 0}+e^{-j\left(\frac{2 \pi}{N}\right)(n-k) \cdot 1}+\cdots+e^{-j\left(\frac{2 \pi}{N}\right)(n-k) \cdot(N-1)}= \begin{cases}0 & (n \neq k) \\ N & (n=k)\end{cases}
$$

$\mathrm{N}=8 \mathrm{D}\ulcorner\mathrm{J}$ \& ID $\mathrm{D} \Gamma$ Matrix (1)

	0	1	2	3	4	5	6	7
Row 0	$e^{-j \frac{\pi}{4} \cdot 0}$	$e^{-j \cdot \frac{\pi}{4} \cdot 0}$	$e^{-j-\frac{\pi}{4} \cdot 0}$	$e^{-j-\frac{\pi}{4} \cdot 0}$	$e^{-j \cdot \frac{\pi}{4} \cdot 0}$	$e^{-j-\frac{\pi}{4} \cdot 0}$	$e^{-j \cdot \frac{\pi}{4} \cdot 0}$	$e^{-j \frac{\pi}{4} \cdot 0}$
	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \cdot \frac{\pi}{4} \cdot 0}$	$e^{+j \cdot \frac{\pi}{4} \cdot 0}$	$e^{+j \cdot \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$

Row $1 e^{-j \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi \cdot 2}{4} \cdot 2} e^{-j \frac{\pi \cdot 3}{4}} e^{-j \frac{\pi}{4} \cdot 4} e^{-j j \cdot \frac{\pi}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 7}$

$$
e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 3} e^{+j \cdot \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 5}+j \cdot \frac{\pi}{4} \cdot 6
$$

Row $2 e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi}{4} \cdot 6}$

$$
\begin{equation*}
e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 6} e^{+j \cdot \frac{\pi}{4} \cdot 0}+j \cdot \frac{\pi}{4} \cdot 2 \quad e^{+j \cdot \frac{\pi}{4} \cdot 4}+\frac{\pi}{4} \cdot 6 \tag{IDFT}
\end{equation*}
$$

Row $3 e^{-j \frac{\pi}{4} \cdot 0} e^{-j \frac{\pi}{4} \cdot 3} e^{-j \frac{\pi \cdot 6}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 1} e^{-j \frac{\pi}{4} \cdot 4} e^{-j j \frac{\pi}{4} \cdot 7} e^{-j \frac{\pi}{4} \cdot 2} e^{-j \frac{\pi \cdot 5}{4}}$

$$
\begin{equation*}
e^{+j \cdot \frac{\pi \cdot 0}{4}} e^{+j \frac{\pi \cdot 3}{4} \cdot 3} e^{+j \frac{\pi}{4} \cdot 6} e^{+j \cdot \frac{\pi}{4} \cdot 1} e^{+j \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi \cdot 7}{4} \cdot 7} e^{+j \frac{\pi \cdot 2}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 5} \tag{DFT}
\end{equation*}
$$

Row $4 e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \frac{\pi \cdot 4}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi}{4} \cdot 0} e^{-j \frac{\pi}{4} \cdot 4}$

$$
\begin{equation*}
e^{+j \frac{\pi \cdot 0}{4} \cdot 0} e^{+j \frac{\pi \cdot 4}{4}} e^{+j \frac{\pi}{4} \cdot 0} e^{+j j \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi \cdot 4}{4}} e^{+j \frac{\pi \cdot 0}{4} \cdot 0} e^{+j \frac{\pi}{4} \cdot 4} \tag{IDFT}
\end{equation*}
$$

Row 5

$$
\begin{align*}
& e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \frac{\pi \cdot 5}{4}} e^{-j \frac{\pi \cdot 2}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 7} e^{-j j \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi \cdot 1}{4}} e^{-j \frac{\pi \cdot 6}{4}} e^{-j \cdot \frac{\pi}{4} \cdot 3} \tag{DFT}\\
& e^{+j \frac{\pi}{4} \cdot 0} e^{+j \frac{\pi \cdot 5}{4} \cdot 5} e^{+j \frac{\pi}{4} \cdot 2} e^{+j j \cdot \frac{\pi}{4} \cdot 7} e^{+j j \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi \cdot 1}{4} \cdot 1} e^{+j \frac{\pi \cdot 6}{4} \cdot 6} e^{+j \frac{\pi}{4} \cdot 3}
\end{align*}
$$

IDFT

Row $6 e^{-j \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi \cdot 2}{4}} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi}{4} \cdot 2}$

$$
\begin{equation*}
e^{+j \cdot \frac{\pi \cdot 0}{4} \cdot} e^{+j \frac{\pi \cdot 6}{4} \cdot 6} e^{+j \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \frac{\pi \cdot 6}{4} \cdot 6} e^{+j \frac{\pi \cdot 4}{4} \cdot 4} e^{+j \frac{\pi}{4} \cdot 2} \tag{IDFT}
\end{equation*}
$$

Row $7 e^{-j j \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 7} e^{-j \cdot \frac{\pi \cdot 6}{4}} e^{-j \frac{\pi \cdot 5}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j j \frac{\pi}{4} \cdot 3} e^{-j \cdot \frac{\pi \cdot 2}{4}} e^{-j \cdot \frac{\pi}{4} \cdot 1}$

$$
\begin{equation*}
e^{+j \frac{\pi \cdot 0}{4}} e^{+j \frac{\pi \cdot 7}{4}} e^{+j \frac{\pi \cdot 6}{4}} e^{+j \cdot \frac{\pi \cdot 5}{4}} e^{+j \frac{\pi \cdot 4}{4} \cdot 4} e^{+j \cdot \frac{\pi \cdot 3}{4}} e^{+j \frac{\pi \cdot 2}{4} \cdot} e^{+j \frac{\pi}{4} \cdot 1} \tag{DFT}
\end{equation*}
$$

Product AB - Diagonal Elements

$C=A^{n} B \quad[\boldsymbol{C}]_{(i, j)}=[\boldsymbol{A}]_{(\text {row } i)} \cdot[\boldsymbol{B}]_{(\text {col } j)}$

$$
C_{(i, i)}=N
$$

Product AB - Off-Diagonal Elements

$C=A \cdot B$

$$
[\boldsymbol{C}]_{(i, j)}=[\boldsymbol{A}]_{(\text {row } i)} \cdot[\boldsymbol{B}]_{(\text {col } j)}
$$

$$
C_{(i, j)}=0
$$

$(1,2)$

$$
\begin{aligned}
& e^{+j \cdot \frac{\pi \cdot 0}{4} \cdot}+e^{+j \frac{\pi}{4} \cdot 1}+e^{+j \cdot \frac{\pi}{4} \cdot 2}+e^{+j \frac{\pi}{4} \cdot 3}+e^{+j \cdot \frac{\pi \cdot 4}{4} \cdot}+e^{+j \frac{\pi \cdot 5}{4} \cdot 5}+e^{+j \cdot \frac{\pi}{4} \cdot 6}+e^{+j j \frac{\pi}{4} \cdot 7}=0
\end{aligned}
$$

Root of Unity

$$
z \equiv e^{-j\left(\frac{2 \pi}{N}\right)}
$$

$$
z^{N}=e^{-j\left(\frac{2 \pi}{N}\right)^{N}}=1
$$

$$
\sum_{k=0}^{N-1} e^{-j\left(\frac{2 \pi}{N}\right)^{k}}=\frac{z^{N}-1}{z-1}=0
$$

W_{8}^{2}
$W_{8}^{0}+W_{8}^{1}+W_{8}^{2}+W_{8}^{3}+W_{8}^{4}+W_{8}^{5}+W_{8}^{6}+W_{8}^{7}=0$

$\mathrm{N}=8 \mathrm{D} \overline{\mathrm{F}}$: Inner Product $\mathrm{X}[0]$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[0]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\boldsymbol{x}=\left(\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right)
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[0]$ is max.

$$
\left.\begin{array}{rl}
X[0]= & \left(\begin{array}{cccccccl}
e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 0}
\end{array}\right\} \bullet \\
& {\left[\begin{array}{cccccc}
x[0] & x[1] & x[2] & x[3] & x[4] & x[5]
\end{array} x[6]\right.} \\
x[7]
\end{array}\right) T
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[1]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\boldsymbol{x}=\left(\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right)
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[1]$ is max.

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[2]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\boldsymbol{x}=\left(\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right)
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[2]$ is max.

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[3]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[3]$ is max.

$$
\left.\begin{array}{rl}
X[3]= & \left(\begin{array}{llllllll}
e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 3} & e^{-j \cdot \frac{\pi}{4} \cdot 6} & e^{-j \cdot \frac{\pi}{4} \cdot 1} & e^{-j \cdot \frac{\pi}{4} \cdot 4} & e^{-j \cdot \frac{\pi}{4} \cdot 7} & e^{-j \cdot \frac{\pi}{4} \cdot 2} & e^{-j \cdot \frac{\pi}{4} \cdot 5}
\end{array}\right) \bullet \\
& {\left[\begin{array}{llllll}
x[0] & x[1] & x[2] & x[3] & x[4] & x[5]
\end{array} x[6]\right.} \\
x[7]
\end{array}\right)_{T}^{T}, ~
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[4]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\boldsymbol{x}=\left(\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right)
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[4]$ is max.

$$
\left.\begin{array}{rl}
\boldsymbol{X}[4]= & \left\{\begin{array}{ccccccll}
e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4} & e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4} & e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4} & e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4}
\end{array}\right\} \bullet \\
& {\left[\begin{array}{cccc}
x[0] & x[1] & x[2] & x[3]
\end{array} x[4]\right.} \\
x[5] & x[6] \\
x[7]
\end{array}\right] T
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[5]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[5]$ is max.

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[6]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[6]$ is max.

$$
\left.\begin{array}{rl}
\boldsymbol{X}[6]= & \left(\left[e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 2}\right.\right.
\end{array}\right) \bullet \text { • }
$$

$\mathrm{N}=8 \mathrm{D} \overline{\mathrm{F}}$: Inner Product $\mathrm{X}[7]$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\boldsymbol{x}=\left(\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right)
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[7]$ is max.

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

