consider a counter example to the statement that we only need a collection of subsets of Ω to form a sigma-field:

 $\Omega = \{1, 2, 3\}$

\Omega = \{ 1 , 2 , 3 \}

 $\mathcal{F} := \{\emptyset, 1, 2, \Omega\}$

 $\{1\} \cup \{2\} = \{1, 2\} \notin \mathcal{F}$

 $\{1 \} \cup \{2 \} = \{1, 2 \}$ notin mathcal F

 $\mathcal{F} = \{ \mathbb{F} := 1, 2, \mathbb{O}$

Clearly, \mathcal{F} cannot be a sigma-field.

The point here is that you cannot take any arbitrary collection of subsets of Ω to form a sigma-field, but you need to take a collection of subsets of Ω that satisfies 3 conditions for the set \mathcal{F} to be a sigma-field: For these 3 conditions, see Xiu 2010 p.10, definition of sigma-field.

If you take ALL possible subsets of Ω , then you have a sigma-field, which is the largest sigma-field possible.

The smallest sigma-field is $\mathcal{F} := \{\emptyset, \Omega\}$		
		\mathcal F := \{ \emptyset , \Omega \}