consider a counter example to the statement that we only need a collection of subsets of Ω to form a sigma-field:

$$
\Omega=\{1,2,3\}
$$

$\mathcal{F}:=\{\emptyset, 1,2, \Omega\}$
Imathcal $F:=\backslash\{$ lemptyset, 1, 2, IOmega 1$\}$
$\{1\} \cup\{2\}=\{1,2\} \notin \mathcal{F}$
$\backslash\{1 \backslash\} \backslash$ cup $\backslash\{2 \backslash\}=\backslash\{1,2 \backslash\} \backslash$ notin \backslash mathcal F
Clearly, \mathcal{F} cannot be a sigma-field.
The point here is that you cannot take any arbitrary collection of subsets of Ω to form a sigma-field, but you need to take a collection of subsets of Ω that satisfies 3 conditions for the set \mathcal{F} to be a sigma-field: For these 3 conditions, see Xiu 2010 p.10, definition of sigma-field.
If you take ALL possible subsets of Ω, then you have a sigma-field, which is the largest sigma-field possible.

The smallest sigma-field is $\mathcal{F}:=\{\emptyset, \Omega\}$

