DFT Frequency (9A)

- Each Row of the DFT Matrix
- •

Copyright (c) 2009, 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

N=8 DFT: The 1st Row of the DFT Matrix

$$\begin{bmatrix} e^{-j\cdot\frac{\pi}{4}\cdot0} & e^{-j\cdot\frac{\pi}{4}\cdot0} & e^{-j\cdot\frac{\pi}{4}\cdot0} & e^{-j\cdot\frac{\pi}{4}\cdot0} & e^{-j\cdot\frac{\pi}{4}\cdot0} & e^{-j\cdot\frac{\pi}{4}\cdot0} & e^{-j\cdot\frac{\pi}{4}\cdot0} \end{bmatrix}$$

$$R = \begin{bmatrix} 0 \text{ cycle} \end{bmatrix}$$

$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 0, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(-\omega t) = \cos(\omega t)$$

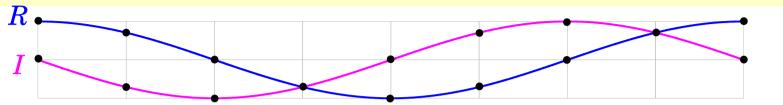
$$I \implies sampled \ values \ of \quad \sin(-\omega t) = -\sin(\omega t)$$

$$\omega t = 2\pi f t$$

$$2\pi \cdot (\frac{0}{8}) \cdot f_s \cdot t$$

X[0] measures how much of the above signal component is present in x.

$$T = N\tau$$


Sampling Time

$$\tau$$

Sampling Frequency
$$f_s = \frac{1}{\tau}$$

Sequence Time Length
$$T = N\tau$$
 Zero Frequency

N=8 DFT: The 2nd Row of the DFT Matrix

1 cycle

$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 1, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(-\omega t) = \cos(\omega t)$$

$$I \implies sampled \ values \ of \quad \sin(-\omega t) = -\sin(\omega t)$$

$$\omega t = 2\pi f t$$

$$2\pi \cdot (\frac{1}{8}) \cdot f_s \cdot t$$

X[1] measures how much of the above signal component is present in x.

Sampling Time

$$N \, au$$

Sequence Time Length
$$T = N\tau$$
 1st Harmonic Freq $f_1 = \frac{1}{T} = \frac{1}{N\tau} = \frac{f_s}{N}$

N=8 DFT: The 3rd Row of the DFT Matrix

2 cycles

$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 2, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(-\omega t) = \cos(\omega t)$$

$$I \implies sampled \ values \ of \quad \sin(-\omega t) = -\sin(\omega t)$$

$$\omega t = 2\pi f t$$

$$2\pi \cdot (\frac{2}{8}) \cdot f_s \cdot t$$

X[2] measures how much of the above signal component is present in x.

$$T = N\tau$$

Sampling Time

Sequence Time Length
$$T = N \tau$$

Sequence Time Length
$$T = N\tau$$
 2nd Harmonic Freq $f_2 = \frac{2}{T} = \frac{2}{N\tau} = \frac{2f_s}{N}$

N=8 DFT: The 4th Row of the DFT Matrix

3 cycles

$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 3, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(-\omega t) = \cos(\omega t)$$

$$I \implies sampled \ values \ of \quad \sin(-\omega t) = -\sin(\omega t)$$

$$\omega t = 2\pi f t$$

$$2\pi \cdot (\frac{3}{8}) \cdot f_s \cdot t$$

X[3] measures how much of the above signal component is present in x.

Sampling Time

Sampling Frequency
$$f_s = \frac{1}{\tau}$$

Sequence Time Length
$$T = N\tau$$

Sequence Time Length
$$T = N\tau$$
 3rd Harmonic Freq $f_3 = \frac{3}{T} = \frac{3}{N\tau} = \frac{3f_s}{N}$

N=8 DFT: The 5th Row of the DFT Matrix

4 cycles

$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 4, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(-\omega t) = \cos(\omega t)$$

$$I \implies sampled \ values \ of \quad \sin(-\omega t) = -\sin(\omega t)$$

$$\omega t = 2\pi f t$$
$$2\pi \cdot (\frac{4}{8}) \cdot f_s \cdot t$$

X[4] measures how much of the above signal component is present in x.

Sampling Time

Sampling Frequency
$$f_s = \frac{1}{\tau}$$

Sequence Time Length
$$T = N\tau$$

Sequence Time Length
$$T = N\tau$$
 4th Harmonic Freq $f_4 = \frac{4}{T} = \frac{4}{N\tau} = \frac{4f_s}{N}$

N=8 DFT: The 6th Row of the DFT Matrix

3 cycles

$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 5, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(\omega't) = \cos(-(-\omega)t)$$

$$I \implies sampled \ values \ of \quad \sin(\omega't) = \sin(-(-\omega)t)$$

$$-\omega t = -2\pi f t$$
$$2\pi \cdot (\frac{-3}{8}) \cdot f_s \cdot t$$

X[5] measures how much of the above signal component is present in x.

Sampling Time

Sequence Time Length
$$T = N\tau$$

Sequence Time Length
$$T = N\tau$$
 3rd Harmonic Freq $f_3 = \frac{3}{T} = \frac{3}{N\tau} = \frac{3f_s}{N}$

N=8 DFT: The 7th Row of the DFT Matrix

2 cycles

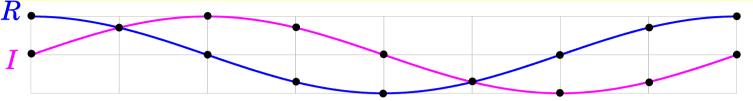
$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 2, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(\omega't) = \cos(-(-\omega)t)$$

$$I \implies sampled \ values \ of \quad \sin(\omega't) = \sin(-(-\omega)t)$$

$$-\omega t = -2\pi f t$$
$$2\pi \cdot (\frac{-2}{8}) \cdot f_s \cdot t$$

X[6] measures how much of the above signal component is present in x.


Sampling Time

$$\tau$$

Sequence Time Length
$$T = N \tau$$

Sequence Time Length
$$T = N\tau$$
 2nd Harmonic Freq $f_2 = \frac{2}{T} = \frac{2}{N\tau} = \frac{2f_s}{N}$

N=8 DFT: The 8th Row of the DFT Matrix

1 cycle

$$W_8^{kn} = e^{-j(\frac{2\pi}{8})kn}$$
 $k = 7, n = 0, 1, ..., 7$

$$R \implies sampled \ values \ of \quad \cos(\omega't) = \cos(-(-\omega)t) \qquad (-\omega t = -2\pi f t)$$

$$I \implies sampled \ values \ of \quad \sin(\omega't) = \sin(-(-\omega)t)$$

$$-\omega t = -2\pi f t$$
$$2\pi \cdot (\frac{-1}{8}) \cdot f_s \cdot t$$

X[7] measures how much of the above signal component is present in x.

Sampling Time

$$\boldsymbol{\tau}$$

Sequence Time Length
$$T = N\tau$$
 1st Harmonic Freq $f_1 = \frac{1}{T} = \frac{1}{N\tau} = \frac{f_s}{N}$

Fundamental Frequency

Sampling Time

τ

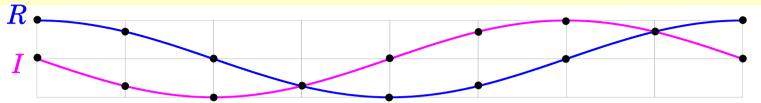
Sequence Time Length $T = N \tau$

Sampling Frequency
$$f_s = \frac{1}{\tau}$$

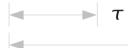
1st Harmonic Freq
$$f_1 = \frac{1}{T} = \frac{1}{N\tau} = \frac{f_s}{N}$$

$$f_2 = 2 \cdot f_1$$

$$f_3 = 3 \cdot f_1$$


 $f_{N-1} = (N-1) \cdot f_1$

Fundamental Frequency
$$f_{\circ}$$


The Lowest Frequency $f_0 = f_1 = \frac{f_s}{N}$

1 cycle

Normalized Frequency

1 cycle

$$T = N\tau$$

Sampling Time

Sequence Time Length $T = N \tau$

$$f_1 = 1 \cdot f_1$$

$$f_2 = 2 \cdot f_1$$

$$f_3 = 3 \cdot f_1$$
...

$$f_{N-1} = (N-1) \cdot f_1 \qquad (N-1)/N$$

Sampling Frequency $f_s = \frac{1}{\tau}$ (samples per second)

1st Harmonic Freq
$$f_1 = \frac{1}{T} = \frac{1}{N\tau} = \frac{f_s}{N}$$

$$n = 0, 1, 2, ..., N-1$$

Normalized Frequency (cycles per sample)

$$f_n = \frac{n \cdot f_s}{N} \qquad \qquad \frac{f_n}{f_s} = \frac{n}{N}$$

$$\frac{f_n}{f_s} = \frac{n}{N}$$

N=8 DFT: DFT Matrix in + or - Frequencies

```
\omega_0 = 2\pi \cdot \frac{f_s}{N}
```

```
Oth row: samples of
                                                                    (0 cycle)
                                  \cos 0 \omega_0 t + j \cdot \sin 0 \omega_0 t
1th row: samples of
                                  \cos 1\omega_0 t + j \cdot \sin 1\omega_0 t
                                                                    (1 cycle)
2th row: samples of
                                  \cos 2\omega_0 t + j \cdot \sin 2\omega_0 t
                                                                    (2 cycles)
3th row: samples of
                                  \cos 3\omega_0 t + j \cdot \sin 3\omega_0 t
                                                                    (3 cycles)
4th row: samples of
                                  \cos 4\omega_0 t + j \cdot \sin 4\omega_0 t
                                                                    (4 cycles)
5th row: samples of
                                  \cos 5\omega_0 t + j \cdot \sin 5\omega_0 t
                                                                    (5 cycles)
6th row: samples of
                                  \cos 6\omega_0 t + j \cdot \sin 6\omega_0 t
                                                                    (6 cycles)
7th row: samples of
                                                                    (7 cycles)
                                  \cos 7 \omega_0 t + j \cdot \sin 7 \omega_0 t
```

```
Oth row: samples of
                               \cos(0\omega_0)t + j \cdot \sin(0\omega_0)t
1th row: samples of
                               \cos(-7\omega_0)t + j \cdot \sin(-7\omega_0)t
2th row: samples of
                               \cos(-6\omega_0)t + j \cdot \sin(-6\omega_0)t
3th row: samples of
                               \cos(-5\omega_0)t + j \cdot \sin(-5\omega_0)t
4th row: samples of
                               \cos(-4\omega_0)t + j \cdot \sin(-4\omega_0)t
5th row: samples of
                               \cos(-3\omega_0)t + j \cdot \sin(-3\omega_0)t
6th row: samples of
                               \cos(-2\omega_0)t + j \cdot \sin(-2\omega_0)t
7th row: samples of
                               \cos(-1\omega_0)t + j \cdot \sin(-1\omega_0)t
```

(0 cycle)

(7 cycles)

(6 cycles)

(5 cycles)

(4 cycles)

(3 cycles)

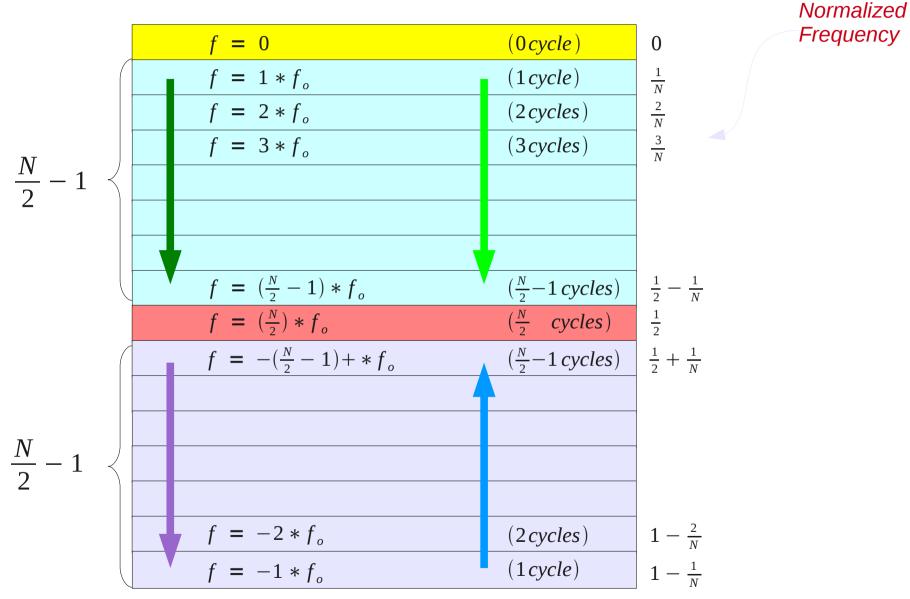
(2 cycles)

(1 cycles)

N=8 DFT: DFT Matrix in Both Frequencies

$$\omega_0 = 2\pi \cdot \frac{f_s}{N}$$

```
Oth row: samples of
                                  \cos 0 \omega_0 t + j \cdot \sin 0 \omega_0 t
                                                                     (0 cycle)
1th row: samples of
                                  \cos 1\omega_0 t + j \cdot \sin 1\omega_0 t
                                                                     (1 cycle)
2th row: samples of
                                  \cos 2\omega_0 t + j \cdot \sin 2\omega_0 t
                                                                     (2 cycles)
3th row: samples of
                                  \cos 3\omega_0 t + j \cdot \sin 3\omega_0 t
                                                                     (3 cycles)
4th row: samples of
                                  \cos 4\omega_0 t + j \cdot \sin 4\omega_0 t
                                                                     (4 cycles)
5th row: samples of
                                  \cos 5\omega_0 t + j \cdot \sin 5\omega_0 t
                                                                     (5 cycles)
6th row: samples of
                                  \cos 6 \omega_0 t + j \cdot \sin 6 \omega_0 t
                                                                     (6 cycles)
7th row: samples of
                                  \cos 7 \omega_0 t + j \cdot \sin 7 \omega_0 t
                                                                     (7 cycles)
```


```
Oth row: samples of
                                   \cos 0 \omega_0 t + j \cdot \sin 0 \omega_0 t
1th row: samples of
                                   \cos 1\omega_0 t + j \cdot \sin 1\omega_0 t
2th row: samples of
                                   \cos 2\omega_0 t + j \cdot \sin 2\omega_0 t
3th row: samples of
                                   \cos 3\omega_0 t + j \cdot \sin 3\omega_0 t
4th row: samples of
                                   \cos 4\omega_0 t + j \cdot \sin 4\omega_0 t
5th row: samples of
                                   \cos 3\omega_0 t - j \cdot \sin 3\omega_0 t
6th row: samples of
                                   \cos 2\omega_0 t - j \cdot \sin 2\omega_0 t
7th row: samples of
                                   \cos 1\omega_0 t - j \cdot \sin 1\omega_0 t
```

(1 cycles)

(0 cycle)

(1 cycle)

Frequency View of a DFT Matrix

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann