FFT (6B)

- DFT Matrix Property

Copyright (c) 2009 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

$\mathrm{N}=8 \mathrm{DFT}$

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \\
& {\left[\begin{array}{l}
W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n} \\
X[0] \\
X[2] \\
X[3] \\
X[4] \\
X[5] \\
X[6] \\
X[7]
\end{array}\right]=\left[\begin{array}{llllllll}
W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{8} & W_{8}^{10} & W_{8}^{12} & W_{8}^{14} \\
W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{9} & W_{8}^{12} & W_{8}^{15} & W_{8}^{18} & W_{8}^{21} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{8} & W_{8}^{12} & W_{8}^{16} & W_{8}^{20} & W_{8}^{24} & W_{8}^{28} \\
W_{8}^{0} & W_{8}^{5} & W_{8}^{10} & W_{8}^{15} & W_{8}^{20} & W_{8}^{25} & W_{8}^{30} & W_{8}^{35} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{12} & W_{8}^{18} & W_{8}^{24} & W_{8}^{30} & W_{8}^{36} & W_{8}^{42} \\
W_{8}^{0} & W_{8}^{7} & W_{8}^{14} & W_{8}^{21} & W_{8}^{28} & W_{8}^{35} & W_{8}^{42} & W_{8}^{49}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right]}
\end{aligned}
$$

$\mathrm{N}=8 \mathrm{~J} \mathrm{DFT}$

$$
x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
$$

$\mathrm{N}=8$ DF丁 Matrix (1)

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

N=8 IDFT Matrix (1)

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\top}$ Matrix (1)

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

N=8 IDFT Matrix (1)

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

Symmetric Matrices

\square

$$
\boldsymbol{A}=\boldsymbol{A}^{T}
$$

$$
B=A^{*}
$$

Matrix Multiplication - AB

$C=A^{*} B \quad[\boldsymbol{C}]_{(i, j)}=[\boldsymbol{A}]_{(\text {row } i)} \cdot[\boldsymbol{B}]_{(\text {col } j)}$

C(1, 1) $e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 3} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 7}$

$$
\begin{array}{ccccccccl}
e^{+j \cdot \frac{\pi}{4} \cdot 0} & e^{+j \cdot \frac{\pi}{4} \cdot 1} & e^{+j \cdot \frac{\pi}{4} \cdot 2} & e^{+j \cdot \frac{\pi}{4} \cdot 3} & e^{+j \cdot \frac{\pi}{4} \cdot 4} & e^{+j \cdot \frac{\pi}{4} \cdot 5} & e^{+j \cdot \frac{\pi}{4} \cdot 6} & e^{+j \cdot \frac{\pi}{4} \cdot 7} \\
\mathbf{1} & \mathbf{+ 1} & =\mathbf{N}
\end{array}
$$

$C(1,2)$

$$
\begin{aligned}
& e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 3} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 7} \\
& e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 6} e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 6} \\
& e^{+j \cdot \frac{\pi}{4} \cdot 0}+e^{+j \cdot \frac{\pi}{4} \cdot 1}+e^{+j \cdot \frac{\pi}{4} \cdot 2}+e^{+j \cdot \frac{\pi}{4} \cdot 3}+e^{+j \cdot \frac{\pi}{4} \cdot 4}+e^{+j \cdot \frac{\pi}{4} \cdot 5}+e^{+j \cdot \frac{\pi}{4} \cdot 6}+e^{+j \cdot \frac{\pi}{4} \cdot 7}=0
\end{aligned}
$$

Root of Unity

$$
\sum_{k=0}^{N-1} W_{N}^{k}=\sum_{k=0}^{N-1} e^{-j\left(\frac{2 \pi}{N}\right)^{k}}=0
$$

$$
z \equiv e^{-j\left(\frac{2 \pi}{N}\right)}
$$

$$
z^{N}=e^{-j\left(\frac{2 \pi}{N}\right)^{N}}=1
$$

W_{8}^{2}

$$
\sum_{k=0}^{N-1} e^{-j\left(\frac{2 \pi}{N}\right)^{k}}=\frac{z^{N}-1}{z-1}=0
$$

$W_{8}^{0}+W_{8}^{1}+W_{8}^{2}+W_{8}^{3}+W_{8}^{4}+W_{8}^{5}+W_{8}^{6}+W_{8}^{7}=0$

Unitary Matrix

Complex Phase Periodicity

$$
W_{8}^{k}=e^{e j\left(\frac{2 \pi}{8}\right) k}
$$

$$
W_{8}^{-k}=e^{\oplus j\left(\frac{2 \pi}{8}\right) k}
$$

$$
\begin{aligned}
W_{8}^{1} & =W_{8}^{-7} \\
W_{8}^{2} & =W_{8}^{-6} \\
W_{8}^{3} & =W_{8}^{-5} \\
W_{8}^{4} & =W_{8}^{-4} \\
W_{8}^{5} & =W_{8}^{-3} \\
W_{8}^{6} & =W_{8}^{-2} \\
W_{8}^{7} & =W_{8}^{-1} \\
W_{N}^{k+N} & =W_{N}^{k}
\end{aligned}
$$

Complex Phase Symmetry (1)

$$
W_{8}^{k}=e^{\Theta j\left(\frac{2 \pi}{8}\right) k}
$$

$$
k=0,1,2,3,4,5,6,7
$$

$$
W_{N}^{k+\frac{N}{2}}=-W_{N}^{k}
$$

$$
W_{8}^{6}
$$

W_{8}^{2}

$$
k=0,1,2,3
$$

Complex Phase Symmetry (2)

$$
W_{8}^{-k}=e^{\oplus j\left(\frac{2 \pi}{8}\right) k}
$$

$$
W_{N}^{-\left(k+\frac{N}{2}\right)}=-W_{N}^{-k}
$$

$$
k=0,1,2,3,4,5,6,7
$$

$$
k=0,1,2,3
$$

Complex Phase - Periodicity

$$
W_{N}^{k}=e^{-j\left(\frac{2 \pi}{N}\right) k}
$$

$$
W_{N}^{-k}=e^{+j\left(\frac{2 \pi}{N}\right) k}
$$

$$
W_{N}^{k-N}=W_{N}^{k}
$$

$$
W_{N}^{k+N}=W_{N}^{k}
$$

$$
W_{N}^{k-N}=e^{-j\left(\frac{2 \pi}{N}\right)(k-N)}
$$

$$
W_{N}^{k+N}=e^{-j\left(\frac{2 \pi}{N}\right)(k+N)}
$$

$$
\frac{W_{N}^{k-N}}{W_{N}^{k}}=\frac{e^{-j\left(\frac{2 \pi}{N}\right)(k-N)}}{e^{-j\left(\frac{2 \pi}{N}\right) k}}=e^{j 2 \pi}=1
$$

$$
\frac{W_{N}^{k+N}}{W_{N}^{k}}=\frac{e^{-j\left(\frac{2 \pi}{N}\right)(k+N)}}{e^{-j\left(\frac{j 2 \pi}{N}\right) k}}=e^{-j 2 \pi}=1
$$

$$
W_{N}^{k N}=1
$$

$$
W_{N}^{-k N}=1
$$

$$
W_{N}^{k N}=e^{-j\left(\frac{2 \pi}{N} k N\right.}=e^{-j 2 \pi k}=1
$$

$$
W_{N}^{k N}=e^{+j\left(\frac{2 \pi}{N} k N\right.}=e^{+j 2 \pi k}=1
$$

Complex Phase - Symmetry

$$
\begin{aligned}
& W_{N}^{k}=e^{-j\left(\frac{2 \pi}{N}\right) k} \\
& W_{N}^{k+\frac{N}{2}}=-W_{N}^{k}
\end{aligned}
$$

$$
W_{N}^{k+\frac{N}{2}}=e^{-j\left(\frac{2 \pi}{N}\right)\left(k+\frac{N}{2}\right)}
$$

$$
=e^{-j \frac{2 \pi}{N} k} \cdot e^{-j\left(\frac{2 \pi}{N}\right)\left(\frac{N}{2}\right)}
$$

$$
=e^{-j \frac{2 \pi}{N} k} \cdot e^{-j \pi}
$$

$$
=e^{-j \frac{2 \pi}{N} k} \cdot(-1)
$$

$$
W_{N}^{k+\frac{N}{2}} \cdot W_{N}^{k}=-1
$$

$$
W_{N}^{-k}=e^{+j\left(\frac{2 \pi}{N}\right) k}
$$

$$
W_{N}^{-\left(\left.k+\frac{N}{2} \right\rvert\,\right.}=-W_{N}^{-k}
$$

$$
W_{N}^{-\left(k+\frac{N}{2}\right)}=e^{+j\left(\frac{2 \pi}{N}\right)\left(k+\frac{N}{2}\right)}
$$

$$
=e^{+j \frac{2 \pi}{N} k} \cdot e^{+j\left(\frac{2 \pi}{N}\right)\left(\frac{N}{2}\right)}
$$

$$
=e^{+j \frac{2 \pi}{N} k} \cdot e^{+j \pi}
$$

$$
=e^{+j \frac{2 \pi}{N} k} \cdot(-1)
$$

$$
W_{N}^{-\left(k+\frac{N}{2}\right)} \cdot W_{N}^{-k}=-1
$$

N=8 DFT Matrix (2)

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

N=8 DF「 Matrix (3)

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

N=8 IDFT Matrix (2)

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

N=8 IDFT Matrix (3)

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

