General Vector Space (3A)

Young Won Lim 11/19/12 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 11/19/12

Vector Space

V: non-empty <u>set</u> of obje	ects	
defined operations:	addition scalar multiplication	u + v <i>k</i> u
if the following axioms a for all object u , v , w and		V: vector space objects in V: vectors
1. if u and v are objects 2. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{u}$ 4. $0 + \mathbf{u} = \mathbf{u} + 0 = \mathbf{u}$ (zer 5. $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{u}$ 6. if <i>k</i> is any scalar and 7. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ 8. $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ 9. $k(m\mathbf{u}) = (km)\mathbf{u}$ 10. $1(\mathbf{u}) = \mathbf{u}$	+ w ro vector)	is in V

Test for a Vector Space

- 1. Identify the set \vee of objects
- 2. Identify the addition and scalar multiplication on V
- 3. Verify $\mathbf{u} + \mathbf{v}$ is in V and $k\mathbf{u}$ is in V

closure under addition and scalar multiplication

4. Confirm other axioms.

```
1. if u and v are objects in V, then u + v is in V

2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}

3. \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}

4. \mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u} (zero vector)

5. \mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + (\mathbf{u}) = \mathbf{0}

6. if k is any scalar and u is objects in V, then ku is in V

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

Subspace

a subset W of a vector space V

If the subset W is itself a vector space the subset W is a subspace of V

```
1. if u and v are objects in W, then u + v is in W

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. 0 + u = u + 0 = u (zero vector)

5. u + (-u) = (-u) + (u) = 0

6. if k is any scalar and u is objects in W, then ku is in W

7. k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}

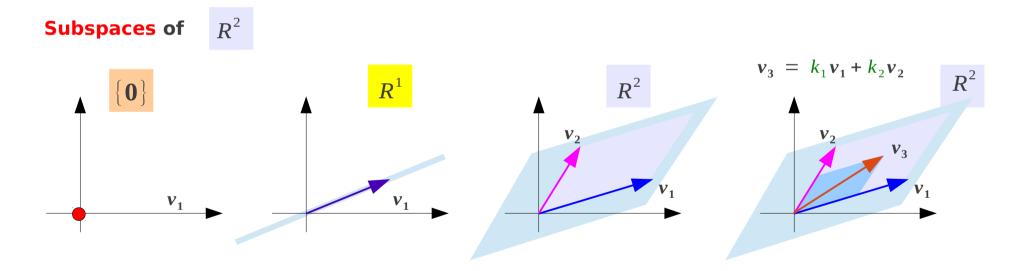
8. (k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}

9. k(m\mathbf{u}) = (km)\mathbf{u}

10. 1(\mathbf{u}) = \mathbf{u}
```

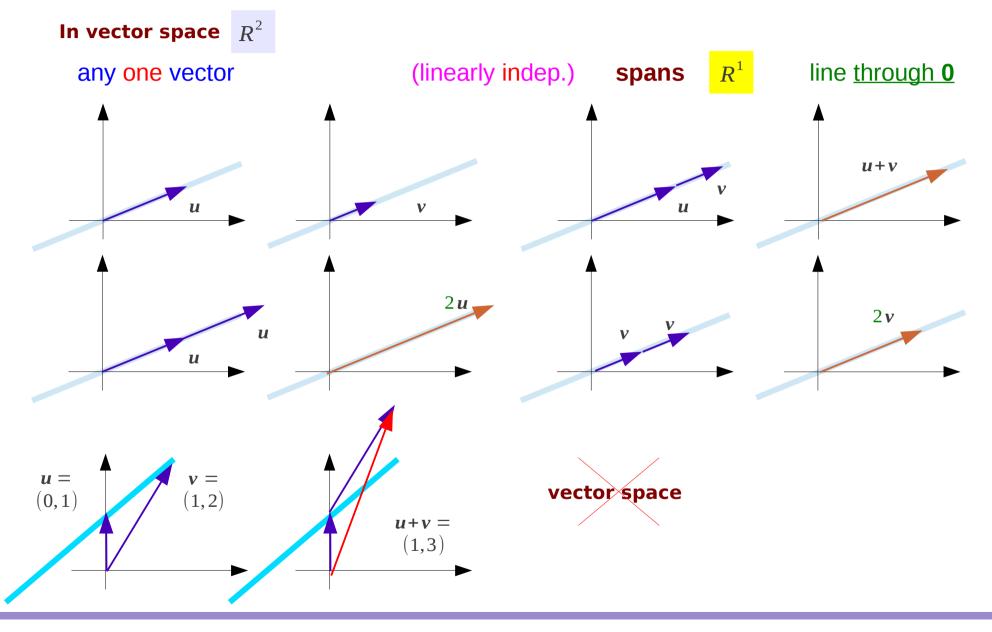
Subspace Example (1)

In vector space R^2



General (2A) Vector Space

Subspace Example (2)

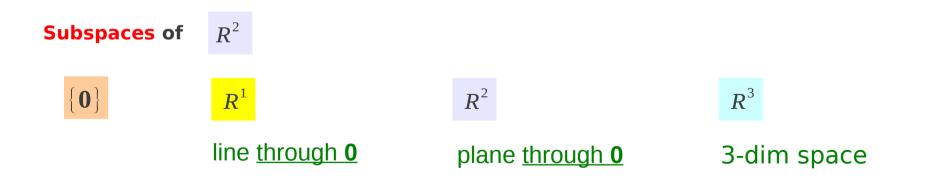


Subspace Example (3)

2 In vector s

pace	R^{3}	
------	---------	--

any one vector	(linearly indep.)	spans	R^1	line <u>through 0</u>
any two non-collinear vectors	(linearly indep.)	spans	R^2	plane <u>through 0</u>
any <mark>three</mark> vectors non-collinear, non-coplanar	(linearly indep.)	spans	R^3	3-dim space
any four or more vectors	(linearly dep.)	spans	R^3	3-dim space



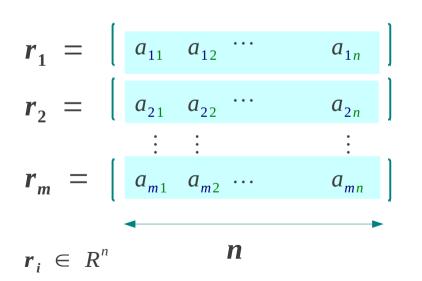
Genera	l ((2A)
Vector	S	pace

Row & Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ROW Spacesubspace of
$$\mathbb{R}^n$$
 $= span\{r_1, r_2, \cdots, r_m\}$ **COLUMN Space**subspace of \mathbb{R}^m

 $= span\{c_1, c_2, \cdots, c_n\}$



$$C_1$$
 C_2 C_n $c_i \in \mathbb{R}^m$ a_{11} a_{12} \cdots a_{1n} a_{21} a_{22} \cdots a_{2n} \vdots \vdots \ldots a_{2n} \vdots a_{m2} \cdots a_{mn}

Row Space

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

ROW Space subspace of
$$\mathbb{R}^n$$

= $span\{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m\}$

$$\boldsymbol{r}_i \in \boldsymbol{R}^n$$

$$\mathbf{r}_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$$
$$\mathbf{r}_{2} = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$$
$$\vdots & \vdots & \vdots \\\mathbf{r}_{m} = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
$$\mathbf{n}$$

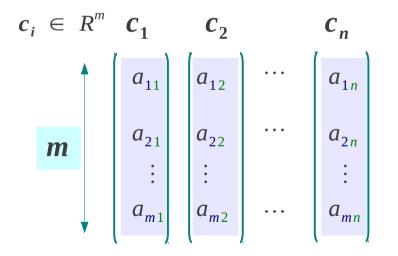
$$k_1 \mathbf{r_1} + k_2 \mathbf{r_2} + \cdots + k_m \mathbf{r_m}$$

$$= k_{1} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \\ + k_{2} \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ + k_{m} \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Column Spaces

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

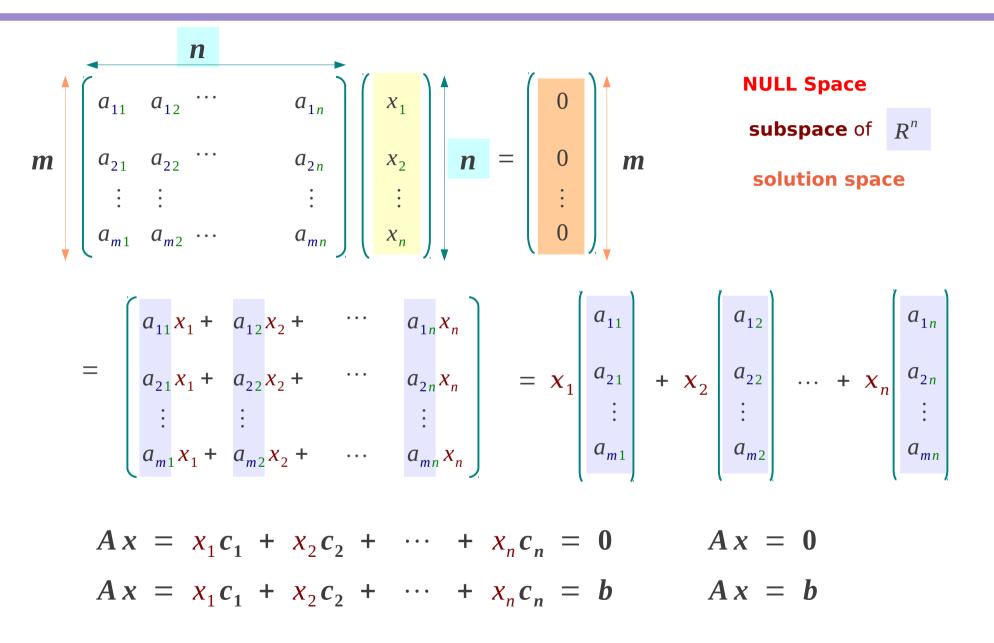
COLUMN Spacesubspace of
$$\mathbb{R}^m$$
= $span\{c_1, c_2, \cdots, c_n\}$



$$k_{1}c_{1} + k_{2}c_{2} + \cdots + k_{n}c_{n}$$

$$= k_{1} \begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{vmatrix} + k_{2} \begin{vmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{vmatrix} \cdots + k_{n} \begin{vmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{vmatrix}$$

Null Space



Null Space

Vector Space

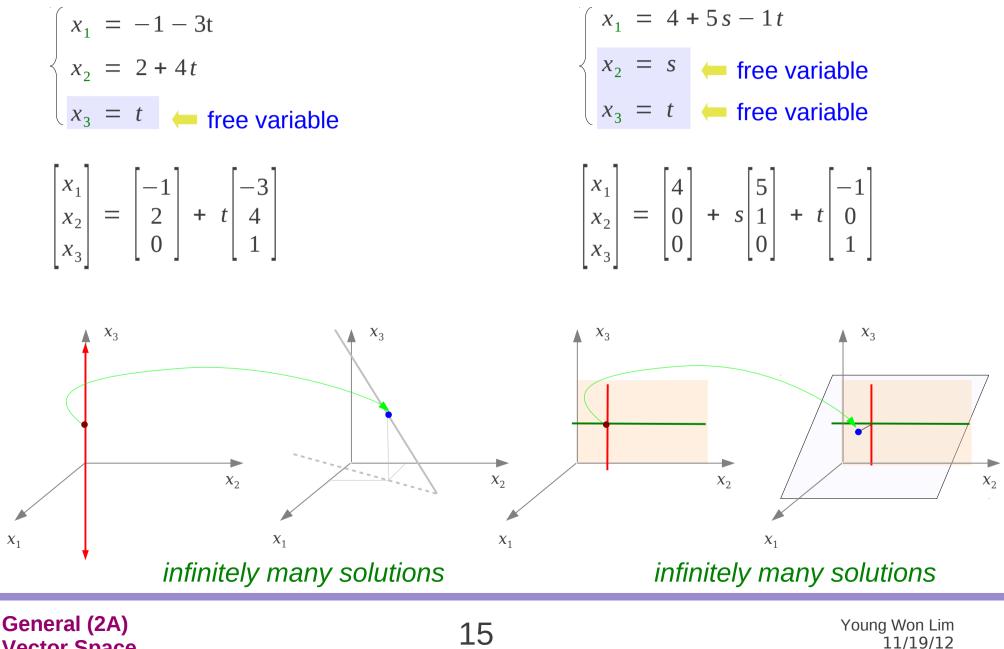
$m = \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots \end{bmatrix}$	$ \begin{array}{c} a_{1n}\\\\ a_{2n}\\\\ \vdots\\\\ a_{mn} \end{array} $ $ \begin{pmatrix} x_1\\\\ x_2\\\\ \vdots\\\\ x_n \end{pmatrix} $ $ \begin{array}{c} n\\\\ n\\\\ n\\\\ n\\\\ n\\\\ n\\\\ n\\\\ n\\\\ n\\\\ n\\$	$= \left(\begin{array}{c} 0\\ 0\\ \vdots\\ 0 \end{array}\right)$	n	
NULL Space solution space	subspace of R^n Ax = 0			
Invertible A	$x = A^{-1}0 = 0$	only trivial	solution	{ 0 }
Non-invertible A	zero row(s) in a RREF one two three	free variables one two three	parameters <i>s, t, u,</i> a <u>line</u> through the origin a <u>plane</u> through the origin a <u>3-dim</u> space through the origin	R^1 R^2 R^3
General (2A)		13	÷	Won Lir

13

Solution Space of **Ax=b** (1)

1 0 0 0 1 2 0) 1 0 3 -1) 0 1 -4 2	$\left[\begin{array}{c cccc} 1 & -5 & 1 & 4 \end{array}\right]$
0 1 2 0) 0 1 -4 2	
0 0 0 1		
$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 0$	1 $1(x_1) + 3 x_3 = -1$ $1(x_2) - 4 x_3 = 2$	$1(x_1) - 5(x_2) + 1(x_3) = 4$
Solve for a leading va	riable $x_1 = -1 - 3 \cdot x_3$ $x_2 = 2 + 4 \cdot x_3$	$x_1 = 4 + 5 \cdot x_2 - 1 \cdot x_3$
Treat a free variable as a parameter	$x_3 = t$	$x_2 = s x_3 = t$
	$x_1 = -1 - 3t$	$x_1 = 4 + 5s - 1t$
	$\begin{cases} x_1 = -1 - 3t \\ x_2 = 2 + 4t \end{cases}$	$x_2 = s$
	$x_3 = t$	$\begin{cases} x_2 = s \\ x_3 = t \end{cases}$

Solution Space of Ax=b (2)



Vector Space

15

Solution Space of Ax=b (3)

1	0	0	0	ſ	1	0	3	-1)	1	-5	1	4	
0	1	2	0		0	1	-4	2		0	0	0	0	
0	0	0	1		0	0	0	0	ļ	0	0	0	0	ļ
					= - = 2 = t	1 – 3 + 4 <i>t</i>	t			$\begin{cases} x_1 = \\ x_2 = \\ x_3 = \end{cases}$	S	s — 1 t		
				$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		$\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$ +	$-t\begin{bmatrix} -3\\4\\1 \end{bmatrix}$			$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$	$\begin{bmatrix} 4\\0\\0\end{bmatrix} +$	$+ \begin{bmatrix} 5\\1\\0 \end{bmatrix}$	$+ t \begin{bmatrix} - \\ 0 \\ 1 \end{bmatrix}$	1) [
	Gene Solut A x	ion of		S	articulo $1x =$	n of	Solu	ieral ution o = 0	ſ	Solu	ticular ution c = b	of S	Seneral Solution $Ax = 0$	of

Linear System & Inner Product (1)

Linear Equations

Corresponding Homogeneous Equation

$$\boldsymbol{a}$$
 = $(\boldsymbol{a}_1$, \boldsymbol{a}_2 , \cdots , $\boldsymbol{a}_n)$

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n)$$

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

normal vector
$$a \cdot x = b$$

$$a \cdot x = 0$$

each solution vector \mathbf{x} of a homogeneous equation orthogonal to the coefficient vector \mathbf{a}

Homogeneous Linear System

Linear System & Inner Product (2)

Homogeneous Linear System

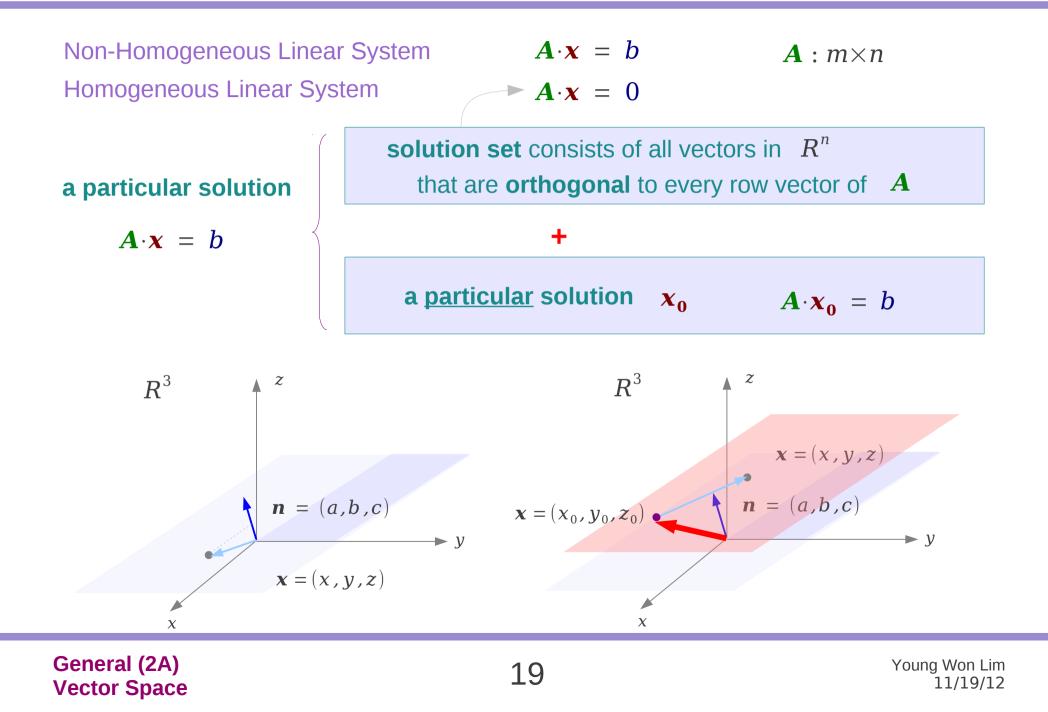
each solution vector \mathbf{X} of a homogeneous equation orthogonal to the row vector \mathbf{r}_i of the coefficient matrix

Homogeneous Linear System $\mathbf{A} \cdot \mathbf{x} = 0$ $\mathbf{A} : m \times n$

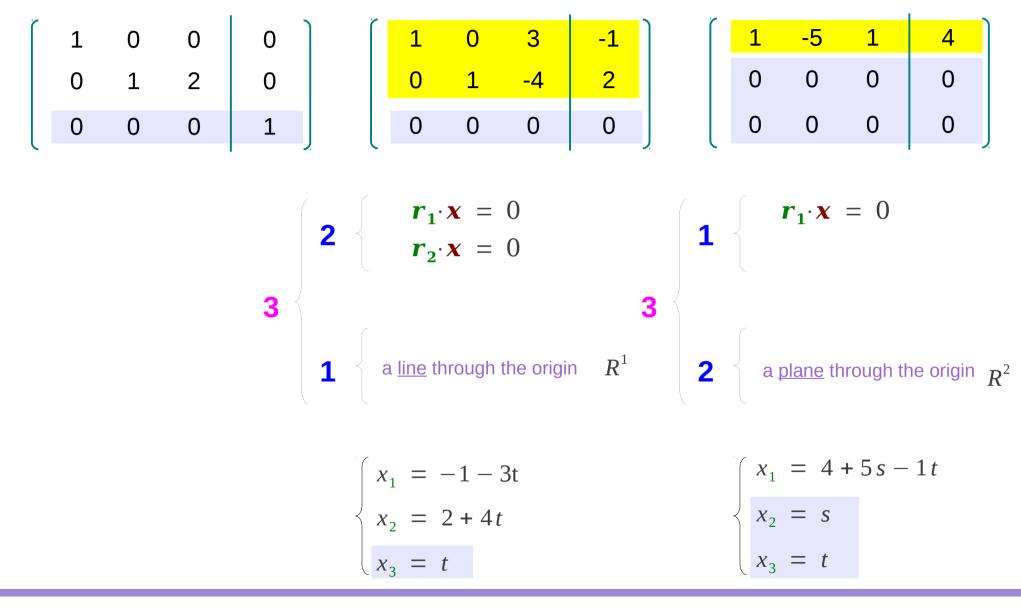
solution set consists of all vectors in \mathbb{R}^n that are **orthogonal** to every row vector of \mathbb{A}

General	(2A)
Vector S	pace

Linear System & Inner Product (3)



Linear System & Inner Product (4)



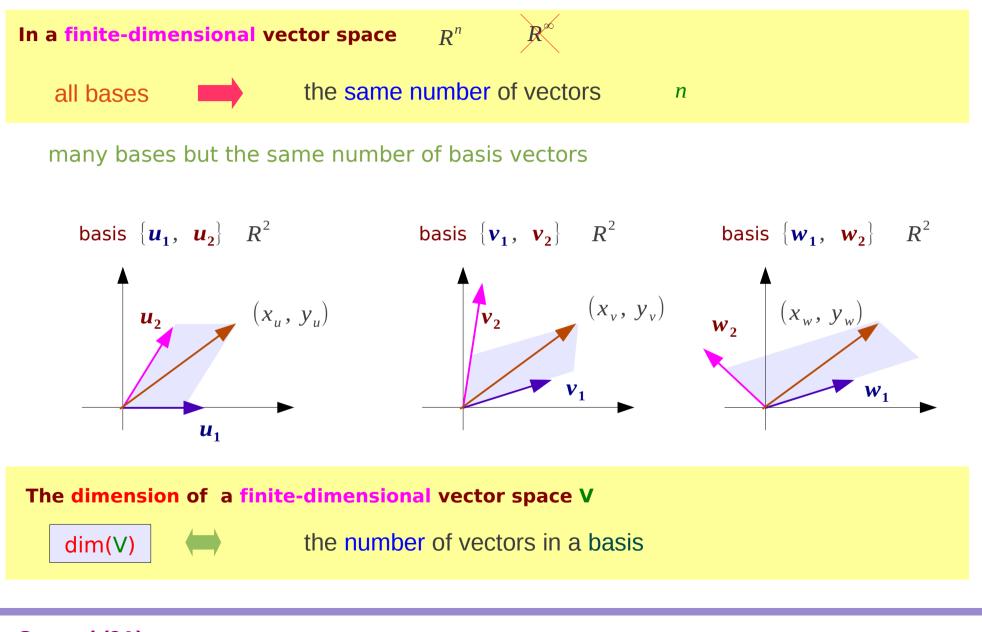
Consistent Linear System **Ax=b**

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + & \cdots & a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + & \cdots & a_{2n}x_n \\ \vdots & \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \cdots & a_{mn}x_n \end{pmatrix}$$

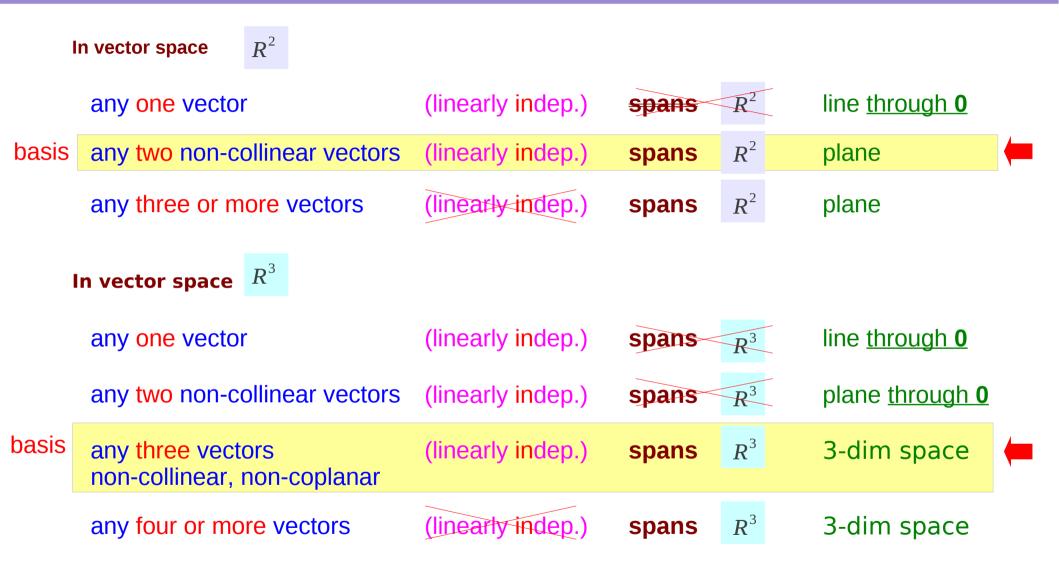
$$Ax = b \quad \text{consistent} \quad \bigstar \quad x_n = b \quad x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} \quad \cdots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

$$Ax = x_1c_1 + x_2c_2 + \cdots + x_nc_n = b$$

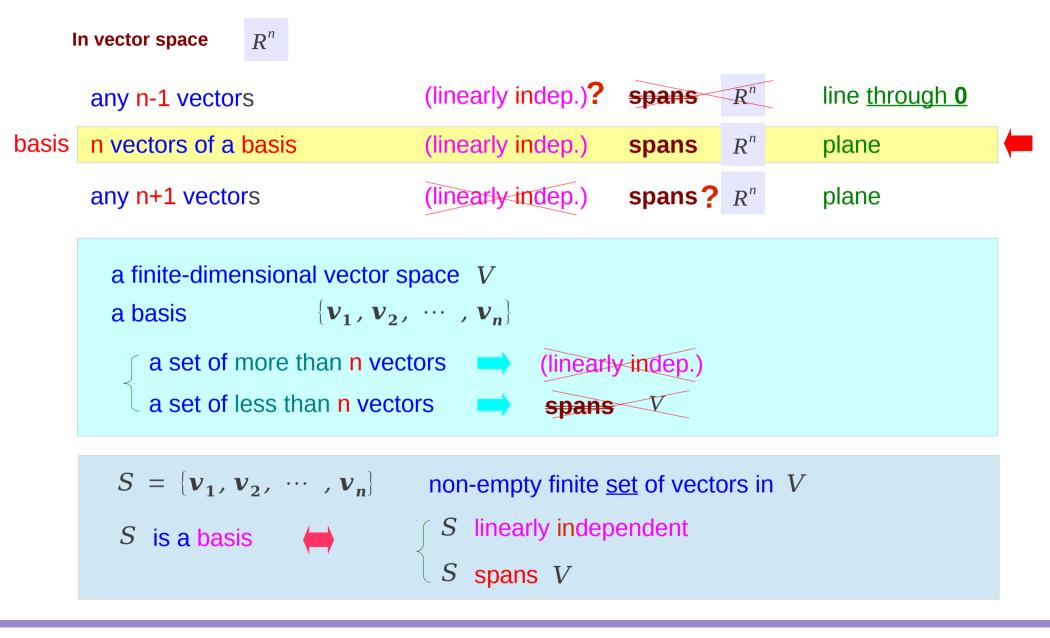
Dimension



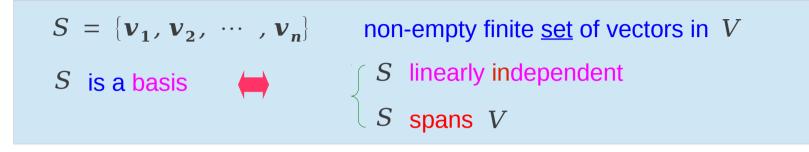
Dimension of a Basis (1)

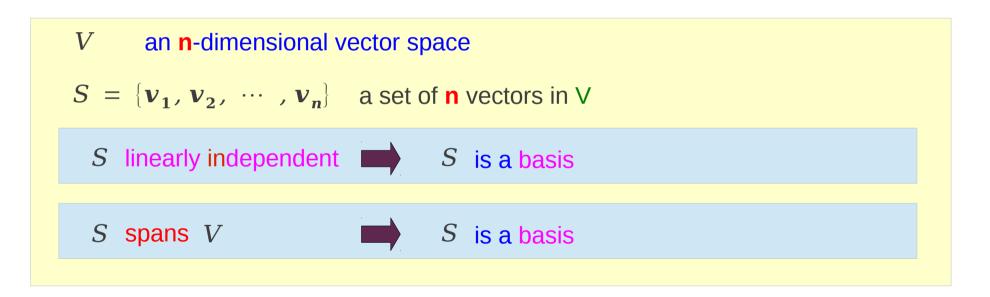


Dimension of a Basis (2)

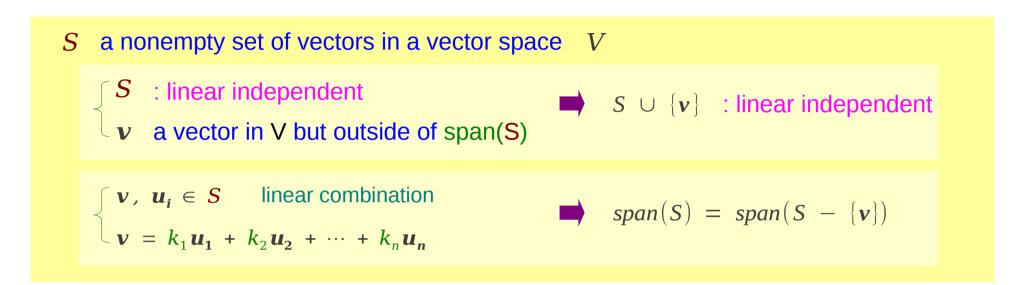


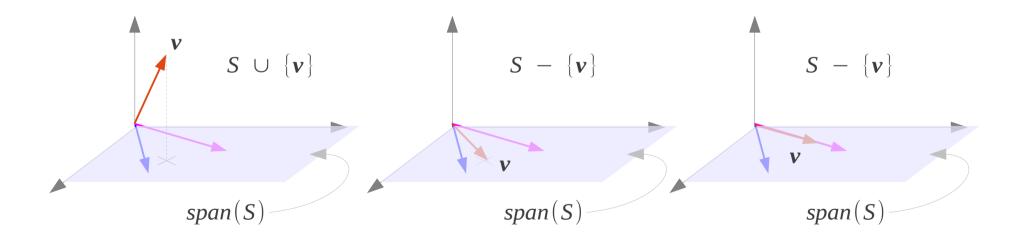
Basis Test





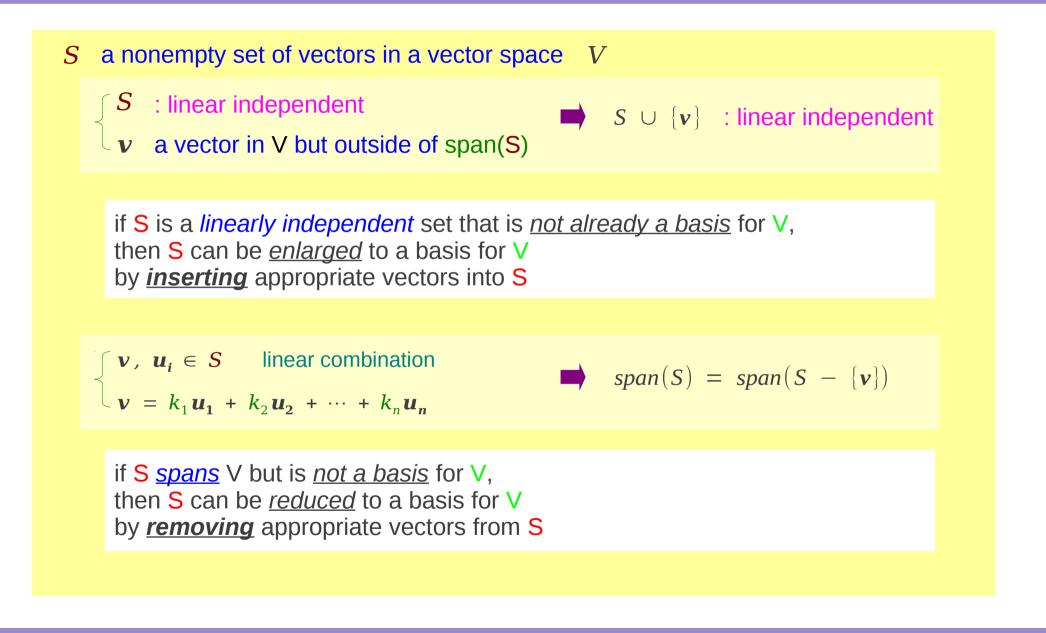
Plus / Minus Theorem





General (2A) Vector Space

Finding a Basis



Vectors in a Vector Space

S a nonempty set of vectors in a vector space V

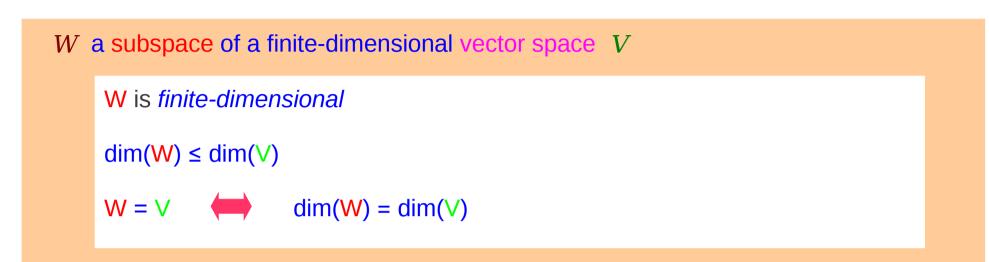
if **S** is a *linearly independent* set that is <u>not already a basis</u> for V, then **S** can be <u>enlarged</u> to a basis for V by <u>inserting</u> appropriate vectors into **S**

Every <u>linearly independent</u> set in a subspace is either a **basis** for that subspace or can be **extended to a basis** for it

if S <u>spans</u> V but is <u>not a basis</u> for V, then S can be <u>reduced</u> to a basis for V by <u>**removing**</u> appropriate vectors from S

Every <u>spanning set</u> for a subspace is either a **basis** for that subspace or has a **basis as a subset**

Dimension of a Subspace

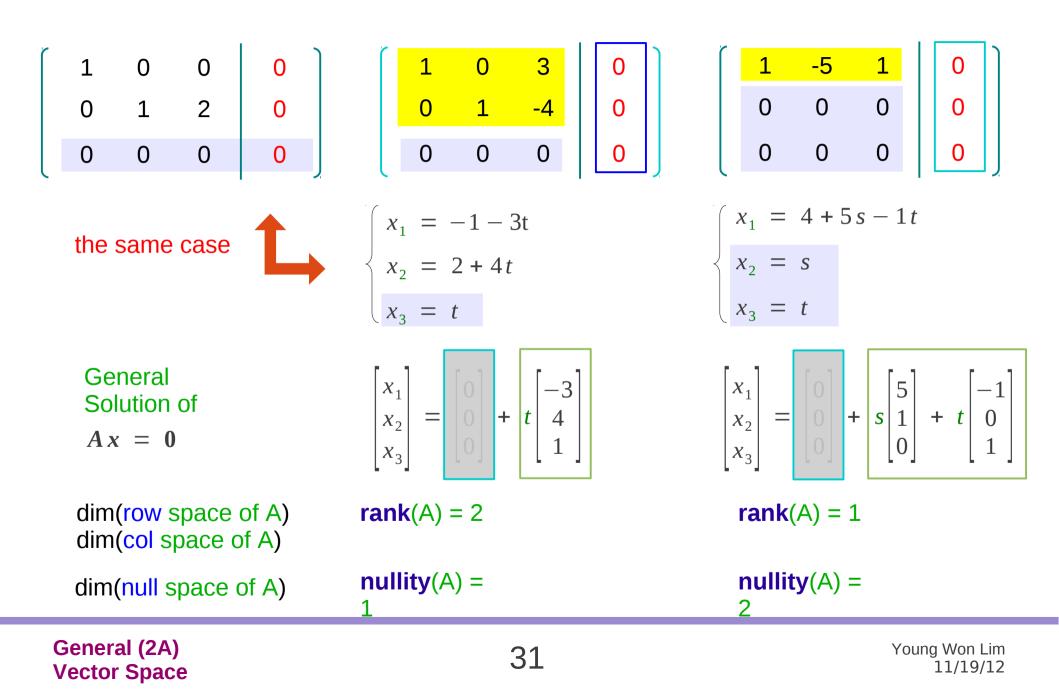


Rank and Nullity

A =	$a_{11} a_{12} \cdots a_{21} a_{22} \cdots$	$\begin{array}{c} \cdot & a_{1n} \\ \cdot & a_{2n} \\ & \vdots \\ \cdot & a_{mn} \end{array}$	ROW Space subspace $subspace$ = $span\{r_1, r_2, \dots, r_m\}$	of R^n
	$\begin{array}{c} \vdots \\ a_{m1} \\ a_{m2} \\ \cdots \end{array}$	$\cdot a_{mn}$	COLUMN Space subspace c_1, c_2, \dots, c_n	of R^m
NULL Sp	bace s	subspace of R^n	solution space $Ax = 0$	
Inverti Non-in	ble A nvertible A	$x = A^{-1}0 = 0$ zero row(s) in a RREF	only trivial solution free variables parameters <i>s, t, u,</i>	

dim(row space of A) = dim(column space of A) = rank(A)
dim(null space of A) = nullity(A)

Solution Space of Ax=0



Elementary Row Operation (1)

ROW Space subspace of	R^n
$= span\{r_1, r_2, \cdots, r_m\}$	
COLUMN Space subspace of	R^m
$= span\{c_1, c_2, \cdots, c_n\}$	

NULL Space	subspa	ce of	R^n
solution space	Ax =	0	
free variables	parameters	s, t, u,	

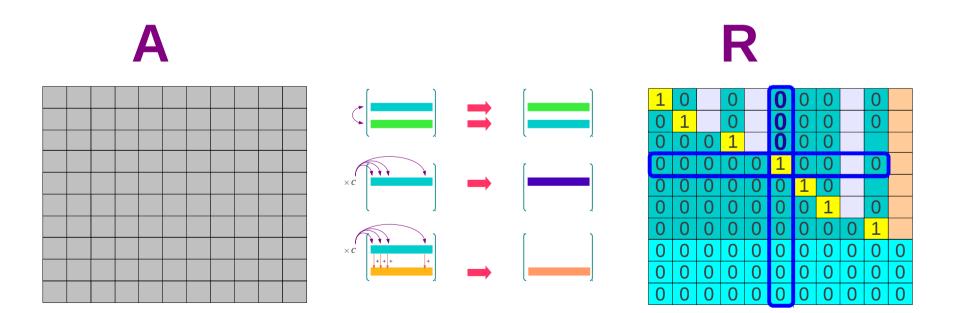
Elementary row operations do <u>not change</u> the **null space** of a matrix

Elementary row operations do <u>not change</u> the **row space** of a matrix

Elementary row operations <u>do change</u> the col space of a matrix

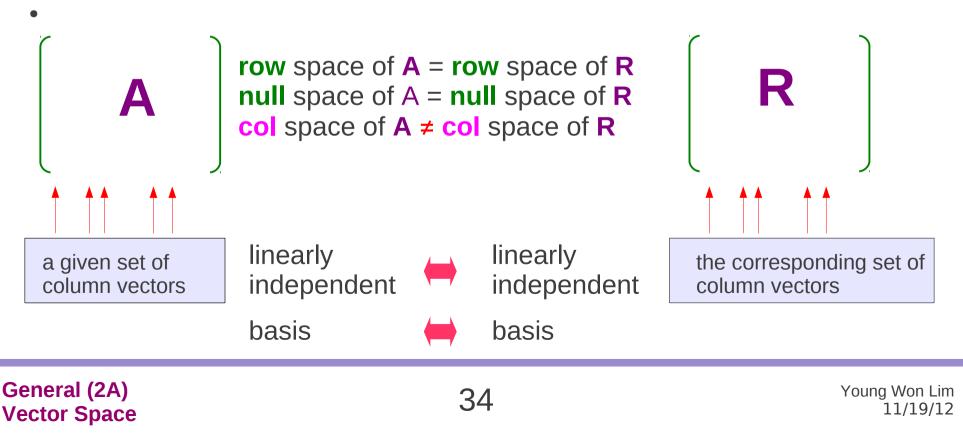
Elementary row operations do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors Elementary row operations do <u>not change</u> the **null space** of a matrix Elementary row operations do <u>not change</u> the **row space** of a matrix Elementary row operations do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors

Elementary row operations <u>do change</u> the col space of a matrix

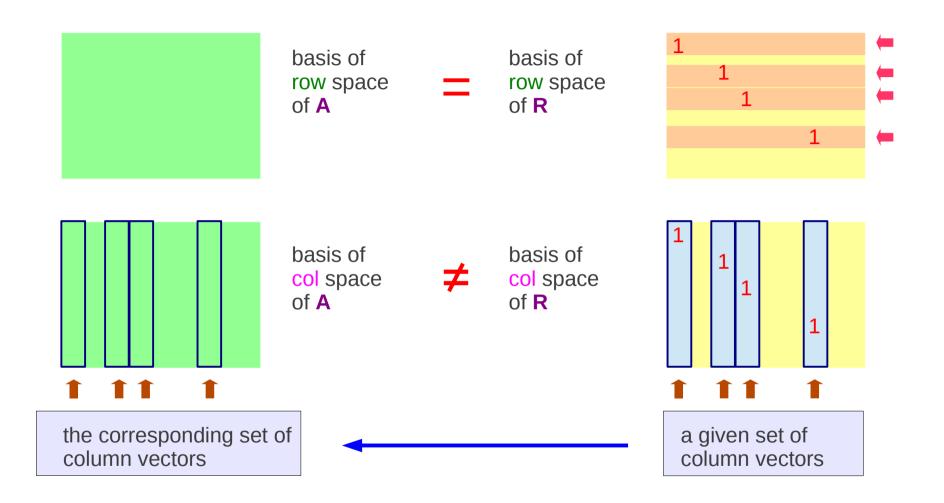


Elementary row operations

- do not change the null space of a matrix
- do not change the row space of a matrix
- do <u>not change</u> the **linear dependence** and **linear independence** relationship among column vectors
- <u>do change</u> the col space of a matrix

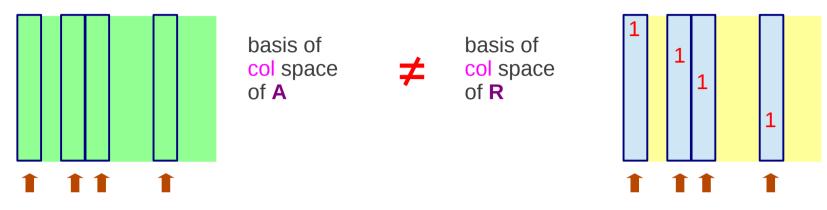


Bases of Row & Column Spaces (1)

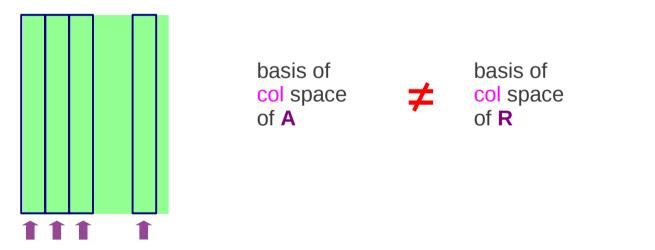


dim(row space of A) = dim(column space of A) = rank(A)

Bases of Row & Column Spaces (2)



the basis consisting of columns of A



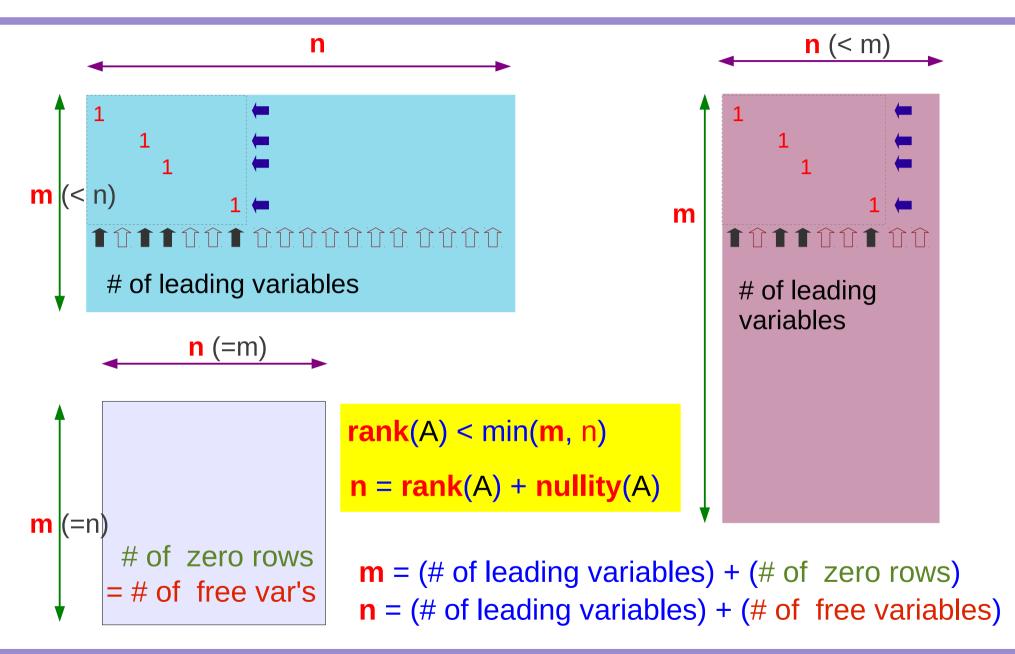
the basis consisting of rows of A

General (2A) Vector Space 1

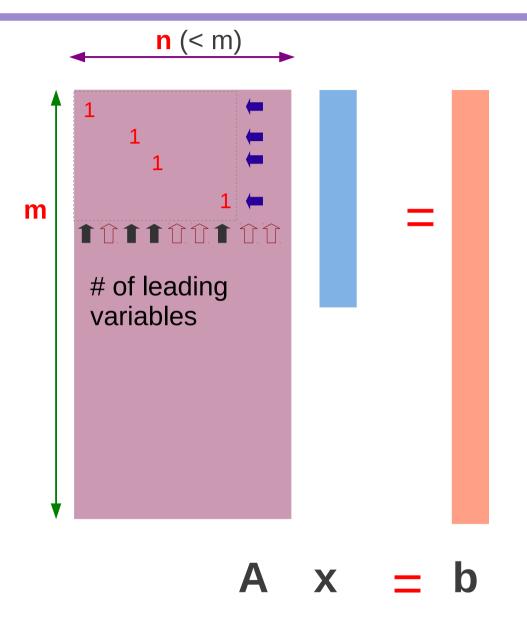
111

1

Rank and Nullity



Overdetermined System



n column vectors can span at most Rⁿ **b** is in R^m $\mathbb{R}^m \supset \mathbb{R}^n$ At least one vector **b** in R^m does not lie in column space For such **b** in R^m Ab = b inconsistent

References

- [1] http://en.wikipedia.org/
- [2] Anton, et al., Elementary Linear Algebra, 10th ed, Wiley, 2011
- [3] Anton, et al., Contemporary Linear Algebra,