Group Delay and Phase Delay (1A)

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Beat Signal

Very similar frequency signals

$$
\begin{aligned}
& 1.1 \mathrm{~Hz} \\
& \begin{array}{l}
\cos (2 \pi * 1.1 * t) \\
0.9 \mathrm{~Hz} \\
\cos (2 \pi * 0.9 * t)
\end{array} \\
& \cos (2 \pi * 1.1 * t)+\cos (2 \pi * 0.9 * t) \\
& =\cos \left(2 \pi * \frac{(1.1-0.9)}{2} * t\right) \cdot \cos \left(2 \pi * \frac{(1.1+0.9)}{2} * t\right) \\
& =\cos (2 \pi * 0.1 * t) \cdot \cos (2 \pi * 1.0 * t)
\end{aligned}
$$

Slow moving envelop

Fast moving carrier

Angle and Angular Speed

Phase Shift and Time Shift

measure phase shift not in second
But in portions of a cosine wave cycle within phase change in one cycle

Given time shift (delay)

The same delay applied to all frequencies

Phase Shift \longrightarrow in radians, degrees
Delay $\quad \longrightarrow$ in seconds (time)

The actual phase shift is different According to the frequency

The different phase shift to the different frequency

Frequency Response

Frequency Response $H\left(e^{j \omega}\right)$

LPF example

$$
\left|H\left(e^{j \omega}\right)\right| \quad \text { Magnitude Response }
$$

Linear Phase System

Linear Phase System

Phase Shift \propto Frequency

$$
\angle H\left(e^{j \omega}\right) \propto
$$

a) FIR Filter (Type II) having Linear Phase

c) IIR Filter having Non-Linear Phase
b) FIR Filter (Type IV) having Linear Phase

Non-Linear Phase System
d) FIR Filter having Non-Linear Phase

Uniform Time Delay (1)

Frequency Response $H\left(e^{j \omega}\right)$

The waveform shape can be preserved.

Uniform Time Delay

Uniform Time Delay (2)

Uniform Time Delay
Could remove delay from the phase response to achieve a horizontal line at zero degree (No delay)

The waveform shape can be preserved.

$$
\angle H\left(e^{j \omega}\right)=k \omega
$$

Group Delay

Consider the cosine components at closely spaced frequencies and their phase shifts in relation to each other

Group Delay:
The phase shift changes
for small changes in frequency

A uniform, waveform preserving phase response \rightarrow linear

Constant Group Delay

Uniform Time Delay (linear phase)

Group Delay (2)

Linear Phase System

Phase Shift \propto Frequency

$$
\angle H\left(e^{j \omega}\right) \propto
$$

a) FIR Filter (Type II) having Linear Phase

c) IIR Filter having Non-Linear Phase

b) FIR Filter (Type IV) having Linear Phase

Non-Linear Phase System

Group Delay

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] http://www.libinst.com/tpfd.htm

