Anti-aliasing Prefilter (6B)

•

•

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Sampler

Ideal Sampling

$$\hat{x}(t) = \sum_{n=-\infty}^{+\infty} x(nT) \, \delta(t-nT) \qquad \qquad \hat{x}(t) \approx \sum_{n=-\infty}^{+\infty} x(nT) \, p(t-nT)$$

$$\hat{X}(f) = \int_{-\infty}^{+\infty} \hat{x}(t) e^{-j2\pi f t} dt$$

Practical Sampling

$$\hat{x}(t) \approx \sum_{n=-\infty}^{+\infty} x(nT) p(t-nT)$$

Zero Order Hold (ZOH)

Square Wave CTFT

Continuous Time Fourier Series

$$C_{\underline{k}} = \frac{1}{T} \int_0^T x(t) e^{-j\underline{k}\omega_0 t} dt \qquad \longleftrightarrow \qquad x(t) = \sum_{n=0}^\infty C_k e^{+jk\omega_0 t}$$

$$C_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{+T_{0}/2} x_{T_{0}}(t) e^{-jk\omega_{0}t} dt$$

$$C_{k}T_{0} = \int_{-T_{0}/2}^{+T_{0}/2} x_{T_{0}}(t) e^{-jk\omega_{0}t} dt$$

$$= \int_{-T_{0}/2}^{+T_{0}/2} e^{-jk\omega_{0}t} dt = \left[\frac{-1}{jk\omega_{0}} e^{-jk\omega_{0}t} \right]_{-T/2}^{+T/2}$$

$$= -\frac{e^{-jk\omega_{0}T/2} - e^{+jk\omega_{0}T/2}}{jk\omega_{0}} = \frac{\sin(k\omega_{0}T/2)}{k\omega_{0}/2}$$

$$\omega_0 = \frac{2\pi}{T_0}$$

 $\omega_0 = \frac{2\pi}{T_0}$ Fundamental Frequency

CTFT and CTFS

Continuous Time Fourier Transform

Aperiodic Continuous Time Signal

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \quad \longleftrightarrow \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Continuous Time Fourier Series

Periodic Continuous Time Signal

 $-\frac{T_0}{2}$ $-\frac{T}{2}$ $+\frac{T}{2}$ $+\frac{T_0}{2}$

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \qquad \Longrightarrow \qquad x(t) = \sum_{n=0}^{\infty} C_{k} e^{+jk\omega_{0}t}$$

CTFT ← CTFS

Aperiodic Continuous Time Signal

Continuous Time Fourier Transform

As $T_0 \rightarrow \infty$,

$$x_{T_{\circ}}(t) \rightarrow x(t)$$

$$x_{T_0}(t) \to x(t)$$

$$\omega_0 = \frac{2\pi}{T_0} \to 0$$

Periodic Continuous Time Signal

Continuous Time Fourier Series

CTFT and CTFS as $T_0 \to \infty$,

Sampling (1)

Ideal Sampling

Practical Sampling

Sampling (2)

Ideal Sampling

Frequency Domain

П

Sampling (3)

Practical Sampling

Frequency Domain

Discrete Time Fourier Transform

$$\hat{x}(t) = \sum_{n=-\infty}^{+\infty} x(nT) \,\delta(t-nT)$$

$$\hat{X}(f) = \int_{-\infty}^{+\infty} \hat{x}(t) e^{-j2\pi f t} dt$$

$$= \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} x(nT) \underline{\delta(t-nT)} e^{-j2\pi f t} dt$$

$$= \sum_{n=-\infty}^{+\infty} x(nT) e^{-j2\pi f T n} dt$$

$$\hat{X}(f) = \sum_{n=-\infty}^{+\infty} x(nT) e^{-j2\pi fTn}$$

Normalized Frequency

$$fT = \frac{f}{1/T} = \frac{f}{f_s} = \hat{\omega}$$

$$\hat{X}\left(e^{j\hat{\omega}}\right) = \sum_{n=-\infty}^{+\infty} x(nT) e^{-j2\pi\hat{\omega}n}$$

Fourier Series

$$\hat{x}(t) = \sum_{n=-\infty}^{+\infty} x(nT) \,\delta(t-nT)$$

$$\hat{x}(t) = \sum_{n=-\infty}^{+\infty} x(nT) \,\delta(t-nT) \qquad \qquad \hat{X}(f) = \sum_{n=-\infty}^{+\infty} x(nT) \,e^{-j2\pi fT n}$$

$$x(nT) = \frac{1}{f_s} \int_{+f_s/2}^{-f_s/2} \hat{X}(f) e^{+j2\pi f T n} df$$

CTFT

$$\hat{X}(f)$$
 Continuous Periodic

$$= \int_{-\pi}^{+\pi} \hat{X}(\omega) e^{+j\omega n} \frac{d\omega}{2\pi}$$

$$x(nT)$$
 Fourier Series Coefficients

$$\omega = 2\pi f/f_s \qquad \frac{df}{f_s} = \frac{d\omega}{2\pi}$$

Numerical Approximation $X(f) = \lim_{h \to \infty} T\hat{X}(f)$

$$X(f) = \lim_{T \to 0} T \hat{X}(f)$$

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{+j2\pi f t} dt$$

$$\approx \sum_{n=-\infty}^{+\infty} x(nT) e^{-j2\pi fTn} \cdot T$$

$$X(f) \approx T \hat{X}(f)$$

$$\hat{x}(t) = \sum_{n=-\infty}^{+\infty} x(nT) \,\delta(t-nT)$$

DTFT

$$\hat{X}(f) = \sum_{n=-\infty}^{+\infty} x(nT) e^{-j2\pi fT n}$$

Spectrum Replication (1)

Ideal Sampling

$$\hat{x}(t) = \sum_{n=-\infty}^{+\infty} x(nT) \,\delta(t-nT)$$

$$s(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$
$$= \frac{1}{T} \sum_{m=-\infty}^{+\infty} e^{+j2\pi m f_s t}$$

$$\hat{x}(t) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} x(t) e^{+j2\pi m f_s t}$$

$$\hat{X}(f) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} X(f - m f_s)$$

Spectrum Replication (2)

$$S(f) = \frac{1}{T} \sum_{m=-\infty}^{+\infty} \delta(f - m f_s)$$

Convolution $\hat{X}(f) = X(f) * S(f)$

$$\hat{X}(f) = \int_{-\infty}^{+\infty} X(f - f') S(f') df'$$

$$= \frac{1}{T} \sum_{m=-\infty}^{+\infty} \int_{-\infty}^{+\infty} X(f - f') \delta(f' - mf_s) df'$$

$$\hat{X}(f) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} X(f - m f_s)$$

Frequency Domain

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann
- [4] R. G. Lyons, Understanding Digital Signal Processing, 1997
- [5] AVR121: Enhancing ADC resolution by oversampling
- [6] S.J. Orfanidis, Introduction to Signal Processing www.ece.rutgers.edu/~orfanidi/intro2sp