DFT Matrix Properties (3B)

- X[1]
- X[2]
- X[3]
- X[4]
- X[5]
- X[6]
- X[7]

Copyright (c) 2009, 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

$\mathrm{N}=8$ D「丁

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$\left[\begin{array}{l}X[0] \\ X[1] \\ X[2] \\ X[3] \\ X[4] \\ X[5] \\ X[6] \\ X[7]\end{array}\right]=\left[\begin{array}{llllllll}W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\ W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{8} & W_{8}^{10} & W_{8}^{12} & W_{8}^{14} \\ W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{9} & W_{8}^{12} & W_{8}^{15} & W_{8}^{18} & W_{8}^{21} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{8} & W_{8}^{12} & W_{8}^{16} & W_{8}^{20} & W_{8}^{24} & W_{8}^{28} \\ W_{8}^{0} & W_{8}^{5} & W_{8}^{10} & W_{8}^{15} & W_{8}^{20} & W_{8}^{28} & W_{8}^{30} & W_{8}^{38} \\ W_{8}^{0} & W_{8}^{6} & W_{8}^{12} & W_{8}^{18} & W_{8}^{24} & W_{8}^{30} & W_{8}^{36} & W_{8}^{12} \\ W_{8}^{0} & W_{8}^{7} & W_{8}^{14} & W_{8}^{21} & W_{8}^{28} & W_{8}^{33} & W_{8}^{12} & W_{8}^{49}\end{array}\right]\left[\begin{array}{c}x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \\ x[6] \\ x[7]\end{array}\right]$

$\mathrm{N}=8 \mathrm{IDF}$

$$
x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
$$

$\left[\begin{array}{l}x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \\ x[6] \\ x[7]\end{array}\right]=\frac{1}{N}\left[\begin{array}{llllllll}W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{-1} & W_{8}^{-2} & W_{8}^{-8} & W_{8}^{-4} & W_{8}^{-8} & W_{8}^{-8} & W_{8}^{-7} \\ W_{8}^{0} & W_{8}^{-2} & W_{8}^{-4} & W_{8}^{-6} & W_{8}^{-8} & W_{8}^{-10} & W_{8}^{-12} & W_{8}^{-14} \\ W_{8}^{0} & W_{8}^{-3} & W_{8}^{-6} & W_{8}^{-9} & W_{8}^{-12} & W_{8}^{-15} & W_{8}^{-18} & W_{8}^{-21} \\ W_{8}^{0} & W_{8}^{-4} & W_{8}^{-8} & W_{8}^{-12} & W_{8}^{-18} & W_{8}^{-20} & W_{8}^{-24} & W_{8}^{-8} \\ W_{8}^{0} & W_{8}^{-5} & W_{8}^{-10} & W_{8}^{-15} & W_{8}^{-20} & W_{8}^{-25} & W_{8}^{-30} & W_{8}^{-35} \\ W_{8}^{0} & W_{8}^{-6} & W_{8}^{-12} & W_{8}^{-18} & W_{8}^{-24} & W_{8}^{-30} & W_{8}^{-36} & W_{8}^{-2} \\ W_{8}^{0} & W_{8}^{-7} & W_{8}^{-14} & W_{8}^{-21} & W_{8}^{-28} & W_{8}^{-35} & W_{8}^{-42} & W_{8}^{-49}\end{array}\right]\left[\begin{array}{c}X[1] \\ X[2] \\ X[4] \\ X[6] \\ X[7]\end{array}\right]$

$\mathrm{N}=8 \mathrm{D} \Gamma \mathrm{F}$ Matrix (1)

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

N=8 ID F「 Matrix (1)

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{7} W_{8}^{-k n} X[k] \quad W_{8}^{-k n}=e^{+j\left(\frac{2 \pi}{8}\right) k n}
\end{aligned}
$$

Symmetric DFT Matrix - Index (1)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

Symmetric DFT Matrix - Index (2)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

Symmetric DFT Matrix - Index (3)

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

$$
+\mathbf{0}(\bmod N) \quad+\mathbf{1}(\bmod N) \quad+\mathbf{2}(\bmod N)
$$

$+\mathbf{N} \mathbf{- 1}(\bmod N)$

Exponents in DFT matrix \mathbf{A} and IDFT matrix B

Conjugate Transpose DFT Matrix

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \Rightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2 \pi / N) k n}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
X[0] \\
X[1] \\
X[2] \\
\vdots \\
X[N-1]
\end{array}\right]=\left[\begin{array}{l}
\mathbf{n} \\
\\
e^{-j\left(\frac{2 \pi}{N}\right) k n}
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
\vdots \\
x[N-1]
\end{array}\right]=\frac{1}{N}\left[\begin{array}{l}
\mathbf{n} \\
\\
e^{+j\left(\frac{2 \pi}{N}\right) k n}
\end{array}\right]\left[\begin{array}{l}
X[0] \\
X[1] \\
X[2] \\
\vdots \\
X[N-1]
\end{array}\right]} \\
& \left\{\begin{array} { l }
{ \boldsymbol { A } = \boldsymbol { A } ^ { T } } \\
{ \boldsymbol { B } = \boldsymbol { B } ^ { T } }
\end{array} \quad \left\{\begin{array} { l }
{ \boldsymbol { A } ^ { * } = \boldsymbol { B } } \\
{ \boldsymbol { B } ^ { * } = \boldsymbol { A } }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\boldsymbol{A}^{\boldsymbol{H}}=\boldsymbol{B} \\
\boldsymbol{B}^{\boldsymbol{H}}=\boldsymbol{A}
\end{array}\right.\right.\right.
\end{aligned}
$$

Product of DFT \& IDFT Matrix

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}
$$

$$
\left\{\begin{array}{lllll}
\left\{e^{-j\left(\frac{2 \pi}{N}\right) k \cdot 0}\right. & e^{-j\left(\frac{2 \pi}{N}\right) k \cdot 1}, & \cdots & \left.e^{-j\left(\frac{2 \pi}{N}\right) k \cdot(N-1)}\right\}
\end{array}\right.
$$

Inner product

$$
e^{-j\left(\frac{2 \pi}{N}\right)(n-k) \cdot 0}+e^{-j\left(\frac{2 \pi}{N}\right)(n-k) \cdot 1}+\cdots+e^{-j\left(\frac{2 \pi}{N}\right)(n-k) \cdot(N-1)}= \begin{cases}0 & (n \neq k) \\ N & (n=k)\end{cases}
$$

$\mathrm{N}=8 \mathrm{D} \mathrm{D}\ulcorner$ \& ID 「「 Matrix (1)

	0	1	2	3	4	5	6	7
Row 0	$e^{-j \frac{\pi}{4} \cdot 0}$	$e^{-j \cdot \frac{\pi}{4} \cdot 0}$	$e^{-j \frac{\pi}{4} \cdot 0}$	$e^{-j \cdot \frac{\pi}{4} \cdot 0}$	$e^{-j \frac{\pi}{4} \cdot 0}$			
	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \cdot \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \cdot \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi}{4} \cdot 0}$	$e^{+j \frac{\pi \cdot}{4} \cdot 0}$

Row $1 e^{-j \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi \cdot 2}{4} \cdot 2} e^{-j \frac{\pi \cdot 3}{4}} e^{-j \frac{\pi}{4} \cdot 4} e^{-j j \cdot \frac{\pi}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 7}$

$$
e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi}{4} \cdot 1} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 3} e^{+j \cdot \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 5}+j \cdot \frac{\pi}{4} \cdot 6
$$

Row $2 e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 6}$

$$
\begin{equation*}
e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 6} e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi}{4} \cdot 2}+j \cdot \frac{\pi}{4} \cdot 4 \tag{DFT}
\end{equation*}
$$

Row $3 e^{-j \frac{\pi}{4} \cdot 0} e^{-j \frac{\pi}{4} \cdot 3} e^{-j \frac{\pi \cdot 6}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 1} e^{-j \frac{\pi}{4} \cdot 4} e^{-j j \frac{\pi}{4} \cdot 7} e^{-j \frac{\pi}{4} \cdot 2} e^{-j \frac{\pi \cdot 5}{4}}$

$$
e^{+j \cdot \frac{\pi \cdot 0}{4} \cdot 0} e^{+j \frac{\pi \cdot 3}{4} \cdot 3} e^{+j \frac{\pi}{4} \cdot 6} e^{+j \cdot \frac{\pi}{4} \cdot 1} e^{+j \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi \cdot}{4} \cdot 7} e^{+j \frac{\pi \cdot 2}{4} \cdot 2} e^{+j \cdot \frac{\pi}{4} \cdot 5}
$$

Row $4 e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \frac{\pi \cdot 4}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi}{4} \cdot 0} e^{-j \frac{\pi}{4} \cdot 4}$

$$
\begin{equation*}
e^{+j \frac{\pi \cdot 0}{4} \cdot 0} e^{+j \frac{\pi \cdot 4}{4}} e^{+j \frac{\pi}{4} \cdot 0} e^{+j j \frac{\pi}{4} \cdot 4} e^{+j \cdot \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi \cdot 4}{4}} e^{+j \frac{\pi \cdot 0}{4} \cdot 0} e^{+j \frac{\pi}{4} \cdot 4} \tag{IDFT}
\end{equation*}
$$

Row 5

$$
\begin{equation*}
e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 5} \quad e^{-j \cdot \frac{\pi}{4} \cdot 2} \quad e^{-j \cdot \frac{\pi}{4} \cdot 7} \quad e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 5} \quad e^{-j \cdot \frac{\pi}{4} \cdot 2} \quad e^{-j \cdot \frac{\pi}{4} \cdot 7} \quad e^{-j \cdot \frac{\pi}{4} \cdot 3} \tag{DFT}
\end{equation*}
$$

IDFT

Row $6 e^{-j \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi \cdot 2}{4}} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j j \frac{\pi}{4} \cdot 6} e^{-j \frac{\pi}{4} \cdot 4} e^{-j \frac{\pi}{4} \cdot 2}$

$$
\begin{equation*}
e^{+j \frac{\pi}{4} \cdot 0} e^{+j \frac{\pi \cdot 6}{4} \cdot 6} e^{+j \frac{\pi \cdot 4}{4} \cdot 4} e^{+j \frac{\pi}{4} \cdot 2} e^{+j \frac{\pi}{4} \cdot 0} e^{+j \cdot \frac{\pi \cdot 6}{4} \cdot 6} e^{+j \frac{\pi \cdot 4}{4} \cdot 4} e^{+j \frac{\pi}{4} \cdot 2} \tag{IDFT}
\end{equation*}
$$

Row $7 e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 7} e^{-j \cdot \frac{\pi \cdot 6}{4}} e^{-j \frac{\pi \cdot 5}{4} \cdot 5} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j j \frac{\pi}{4} \cdot 3} e^{-j \cdot \frac{\pi \cdot 2}{4}} e^{-j \cdot \frac{\pi}{4} \cdot 1}$

$$
\begin{equation*}
e^{+j \cdot \frac{\pi \cdot 0}{4}} e^{+j \cdot \frac{\pi \cdot 7}{4}} e^{+j \frac{\pi}{4} \cdot 6} e^{+j \cdot \frac{\pi}{4} \cdot 5} e^{+j \cdot \frac{\pi \cdot 4}{4}} e^{+j \cdot \frac{\pi \cdot 3}{4} \cdot 3} e^{+j \frac{\pi \cdot 2}{4} \cdot 2} e^{+j \frac{\pi}{4} \cdot 1} \tag{DFT}
\end{equation*}
$$

Product AB - Diagonal Elements

$C=A^{n} B \quad[\boldsymbol{C}]_{(i, j)}=[\boldsymbol{A}]_{(\text {row } i)} \cdot[\boldsymbol{B}]_{(\text {col } j)}$

$$
C_{(i, i)}=N
$$

Product AB - Off-Diagonal Elements

$C=A \cdot B$

$$
[\boldsymbol{C}]_{(i, j)}=[\boldsymbol{A}]_{(\text {row } i)} \cdot[\boldsymbol{B}]_{(\text {col } j)}
$$

$$
C_{(i, j)}=0
$$

$(1,2)$

$$
\begin{aligned}
& e^{+j \cdot \frac{\pi \cdot 0}{4} \cdot}+e^{+j \frac{\pi}{4} \cdot 1}+e^{+j \cdot \frac{\pi}{4} \cdot 2}+e^{+j \frac{\pi}{4} \cdot 3}+e^{+j \cdot \frac{\pi \cdot 4}{4} \cdot}+e^{+j \frac{\pi \cdot 5}{4} \cdot 5}+e^{+j \cdot \frac{\pi}{4} \cdot 6}+e^{+j j \frac{\pi}{4} \cdot 7}=0
\end{aligned}
$$

Root of Unity

$$
\sum_{k=0}^{N-1} W_{N}^{k}=\sum_{k=0}^{N-1} e^{-j\left(\frac{2 \pi}{N}\right) k}=0
$$

$$
z \equiv e^{-j\left(\frac{2 \pi}{N}\right)}
$$

$$
z^{N}=e^{-j\left(\frac{2 \pi}{N}\right) N}=1
$$

$$
\sum_{k=0}^{N-1} e^{-j\left(\frac{2 \pi}{N}\right) k}=\frac{z^{N}-1}{z-1}=0
$$

Cauchy-Schwartz Inequality

For all vectors \boldsymbol{x} and \boldsymbol{y} of an inner product space

$$
\begin{aligned}
& |\langle\boldsymbol{x}, \boldsymbol{y}\rangle|^{2} \leq\langle\boldsymbol{x}, \boldsymbol{x}\rangle \cdot\langle\boldsymbol{y}, \boldsymbol{y}\rangle \\
& |\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leq\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\|
\end{aligned}
$$

The equality holds if and only if \boldsymbol{x} and \boldsymbol{y} are linearly dependent

$$
\boldsymbol{x}^{H} \cdot \boldsymbol{y} \leq\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\| \quad \boldsymbol{x}=\left(\begin{array}{c}
a_{1}+j b_{1} \\
a_{2}+j b_{2} \\
\vdots \\
a_{n}+j b_{n}
\end{array}\right) \quad \boldsymbol{y}=\left(\begin{array}{c}
c_{1}+j d_{1} \\
c_{2}+j d_{2} \\
\vdots \\
c_{n}+j d_{n}
\end{array}\right)
$$

Inner product is maximum when

$$
\boldsymbol{y}=k \boldsymbol{x}^{*} \quad \boldsymbol{y}=k\left(\begin{array}{c}
a_{1}-j b_{1} \\
a_{2}-j b_{2} \\
\vdots \\
a_{n}-j b_{n}
\end{array}\right)
$$

$\mathrm{N}=8 \mathrm{D} \overline{\mathrm{F}}$: Inner Product $\mathrm{X}[0]$

X[0] measures " 0 cycle" component in x

$$
\boldsymbol{r}_{0}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{0}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=k \boldsymbol{r}_{0}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[0]$ is max.

$$
\begin{aligned}
& \text { Re }\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right) \\
& \ldots \\
& \text { Im }\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
\end{aligned}
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[1]$

X[1] measures " +1 cycle" component in x

$$
\boldsymbol{r}_{1}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{1}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=\boldsymbol{k} \boldsymbol{r}_{1}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[1]$ is max.
그…...........

$$
\begin{aligned}
& \text { _ } \operatorname{Re}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right) \\
& \\
& \\
& \operatorname{Im}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
\end{aligned}
$$

$\mathrm{N}=8 \mathrm{D} \overline{\mathrm{F}}$: Inner Product $\mathrm{X}[2]$

X[2] measures " +2 cycle" component in x

$$
\boldsymbol{r}_{2}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{2}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=k \boldsymbol{r}_{2}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[2]$ is max.

$$
\begin{aligned}
& \text { — } \operatorname{Re}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right) \\
& \ldots \ldots \ldots \ldots \quad \text { Im }\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
\end{aligned}
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product X[3]

X[3] measures " +3 cycle" component in x

$$
\boldsymbol{r}_{3}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{3}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=k \boldsymbol{r}_{3}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[3]$ is max.

$$
\begin{aligned}
& \text { Re }\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right) \\
& \\
& \operatorname{Im}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
\end{aligned}
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product X[4]

$X[4]$ measures " +4 cycle" component in x

$$
\boldsymbol{r}_{4}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{4}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=k \boldsymbol{r}_{4}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[4]$ is max.
NaNANAL.

$$
工 R e\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right)
$$

$$
\cdots \cdots \quad \operatorname{Im}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[5]$

X[5] measures " -3 cycle" component in x

$$
\boldsymbol{r}_{5}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{5}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=k \boldsymbol{r}_{5}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[5]$ is max.

$工 \operatorname{Re}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right)$

$$
\operatorname{Im}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product $\mathrm{X}[6]$

X[6] measures " -2 cycle" component in x

$$
\boldsymbol{r}_{6}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{6}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=k \boldsymbol{r}_{6}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[6]$ is max.

$工 \operatorname{Re}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right)$

$$
\operatorname{Im}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
$$

$\mathrm{N}=8 \mathrm{DF} \mathrm{\Gamma}$: Inner Product X[7]

X[7] measures "-1 cycle" component in x

$$
\boldsymbol{r}_{7}^{H} \cdot \boldsymbol{x} \leq\left\|\boldsymbol{r}_{7}\right\| \cdot\|\boldsymbol{x}\|
$$

$$
\text { maximum when } \boldsymbol{x}=k \boldsymbol{r}_{7}^{*}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[7]$ is max.

$工 \operatorname{Re}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\cos \left(-\frac{2 \pi}{8} k n\right)$

$$
\operatorname{Im}\left\{e^{-j \frac{2 \pi}{8} k n}\right\}=\sin \left(-\frac{2 \pi}{8} k n\right)
$$

$N=8$ DF丁 : $X[0]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$X[0]$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \boldsymbol{A}^{H}=N \boldsymbol{I} \\
& \boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I}
\end{aligned}
$$

Unitary Matrix

When \boldsymbol{x} looks like this, $\boldsymbol{X}[0]$ is max. $(=\boldsymbol{N})$
$\boldsymbol{x} \quad \boldsymbol{X}[k]=0$ for $k \neq 0$

$N=8$ DF丁 : $X[1]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \boldsymbol{A}^{H}=N \boldsymbol{I} \\
& \boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I}
\end{aligned}
$$

Unitary Matrix

$N=8$ DF丁 : $X[2]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \boldsymbol{A}^{H}=N \boldsymbol{I} \\
& \boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I}
\end{aligned}
$$

Unitary Matrix

$$
\left.\begin{array}{rl}
\boldsymbol{X}[2]= & {\left[e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 6}\right.}
\end{array}\right) \bullet \text { • }
$$

$N=8$ DFT : $X[3]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

When \boldsymbol{x} looks like this, $\boldsymbol{X}[3]$ is max. $(=\boldsymbol{N})$
\boldsymbol{x}

$$
X[k]=0 \text { for } k \neq 3
$$

$N=8$ DF丁 : $X[4]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \boldsymbol{A}^{H}=N \boldsymbol{I} \\
& \boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I}
\end{aligned}
$$

Unitary Matrix

When \boldsymbol{x} looks like this, $\boldsymbol{X}[4]$ is max. $(=\boldsymbol{N})$

$$
\boldsymbol{X}[k]=0 \text { for } k \neq 4 \quad \boldsymbol{x}
$$

$$
\left.\begin{array}{rl}
X[4]= & \left\{\begin{array}{llllllll}
e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4} & e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4} & e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4} & e^{-j \cdot \frac{\pi}{4} \cdot 0} & e^{-j \cdot \frac{\pi}{4} \cdot 4}
\end{array}\right\} \bullet \\
& {\left[\begin{array}{llllll}
x[0] & x[1] & x[2] & x[3] & x[4] & x[5]
\end{array} x[6]\right.} \\
x[7]
\end{array}\right] T
$$

$N=8$ DF丁 : $X[5]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \boldsymbol{A}^{H}=N \boldsymbol{I} \\
& \boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I}
\end{aligned}
$$

Unitary Matrix

When \boldsymbol{x} looks like this, $\boldsymbol{X}[5]$ is max. $(=\boldsymbol{N})$

$$
X[k]=0 \text { for } k \neq 5 \quad \boldsymbol{x}
$$

$N=8$ DF丁 : $X[6]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \boldsymbol{A}^{H}=N \boldsymbol{I} \\
& \boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I}
\end{aligned}
$$

Unitary Matrix

When \boldsymbol{x} looks like this, $\boldsymbol{X}[6]$ is max. $(=\boldsymbol{N})$

$$
X[k]=0 \text { for } k \neq 6 \quad \boldsymbol{x}
$$

$$
\begin{aligned}
& \boldsymbol{X}[6]=\left[e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 2} e^{-j \cdot \frac{\pi}{4} \cdot 0} e^{-j \cdot \frac{\pi}{4} \cdot 6} e^{-j \cdot \frac{\pi}{4} \cdot 4} e^{-j \cdot \frac{\pi}{4} \cdot 2}\right] \bullet \\
& x[0] \quad x[1] \quad x[2] \quad x[3] \quad x[4] \quad x[5] \quad x[6] \quad x[7])^{T}
\end{aligned}
$$

$N=8$ DF丁 : $X[7]$ in $A \cdot B$

$$
X[k]=\sum_{n=0}^{7} W_{8}^{k n} x[n] \quad W_{8}^{k n}=e^{-j\left(\frac{2 \pi}{8}\right) k n}
$$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \boldsymbol{A}^{H}=N \boldsymbol{I} \\
& \boldsymbol{U} \cdot \boldsymbol{U}^{H}=\boldsymbol{I}
\end{aligned}
$$

Unitary Matrix

When \boldsymbol{x} looks like this, $\boldsymbol{X}[7]$ is max. $(=\boldsymbol{N})$

$$
X[k]=0 \text { for } k \neq 7
$$

$$
\underset{x}{ }
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

