Team members:
Tang Yihan
Bleumers Jan
Huang Zhengyuan
Qian Hongzhu
Nogen Willem
Reda Yared
Sun Haowen

Groep 7
 EE4 Project
 SSV-2

Question 1

The result of the simulation we did before is 5.2 m (including the part of the slope). But when we let the solar car roll down from the 1 m slope, it reached 2.9 m . So they are not same.
One of the factors is that we assumed the mass is 1 kg . But our solar car is 756 g . It has effects on the potential energy and the friction between wheels and the ground. Also we assumed Crr(frictional factor) is 0.01 . it is not the same with real value.

```
m*g*h=Crr*m*g*cos3*d(slope)+Crr*m*g*d(flat)
h=1* sin3
So
0.756*9.81*1*sin3=Crr*0.756*9.81*cos3*1+Crr*0.756*9.81*(2.9-1)
```

So $\mathrm{Crr}=0.018$

It is larger than 0.01 which we assumed.

Another factor is that we used tapes and added wooden part made in fablab to fix the shaft. There are more friction on them. And also there are frictions with gears.

New sankey diagram

The top speed of our car is $4.115 \mathrm{~m} / \mathrm{s}$. So the loss on rolling resistance is 0.549 W . Also we changed the calculation about the air resistance. Now the air resistance is $\mathrm{Fr}=0.5^{*} 0.47^{*} 0.2128^{*} 0.281^{*} 1.29^{*} 4.115^{\wedge} 2=0.307 \mathrm{~N}$. So the loss on air resistance is 1.26 W .

Question 2

1. For the gear

The torque made by motor $\mathrm{T}=8.55 * 84 \% * \mathrm{I} * 10^{-3} * i \mathrm{Nm}$
With $\quad I=0.91 \mathrm{~A}$
Torque constant $=8.55 \mathrm{mNm} / \mathrm{A}$
Max efficiency= 84%
Gear ratio $i=10$
$\mathrm{T}=0.0653562 \mathrm{Nm}$
\Longrightarrow

F1 F2
F
20°

According to the radius of gear, 0.0105 m , we can get the force translated from motor. $\mathrm{F}=\mathrm{T} / \mathrm{r}=0.0653562 \mathrm{Nm} / 0.0105 \mathrm{~m}=6.2244 \mathrm{~N}$
$\mathrm{F} 1=\mathrm{F}^{*} \tan 20^{\circ}=2.265 \mathrm{~N}$
$\mathrm{F} 2=\mathrm{F} / \cos 20^{\circ}=2.410 \mathrm{~N}$
2. The mechanical load on the shaft

We assume $\overrightarrow{N_{A}}=\overrightarrow{N_{B}}$. So $N_{A}=N_{B}=3 / 5 \mathrm{~W}=4.4498 \mathrm{~N}$ (ANALYSISED FROM OUR CAR)
$\mathrm{W}=\mathrm{mcar}{ }^{*} \mathrm{~g}=0.756^{*} 9.81=7.41636 \mathrm{~N}$
$\Sigma \mathrm{Fy}=0 \rightarrow \mathrm{~N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}-\mathrm{N}_{\mathrm{C}}-\mathrm{N}_{\mathrm{D}}-\mathrm{W}=0$
$\sum \mathrm{MC}=0 \rightarrow-0.016 \cdot N_{A}-0.082 \cdot W-0.174 \cdot N_{D}+0.190 \cdot N_{B}=0$
$\rightarrow N_{D}=0.955 \mathrm{~N} \quad \mathrm{~N}_{\mathrm{C}}=0.528 \mathrm{~N}$

The force distribution on the shaft:

The bending moment:

The maximum bending moment:

$$
\begin{aligned}
& \sigma_{M A X}=\frac{M_{\max } \cdot R}{I}, \text { where } \mathrm{I}=\frac{1}{4} \cdot \pi \cdot R^{4} \\
& \mathrm{M}_{\max }=0.393 \mathrm{~N} / \mathrm{m} \\
& \rightarrow \sigma_{M A X}=\frac{4 \cdot M_{\max }}{\pi \cdot R^{3}}=\frac{4 \cdot(0.393)}{\pi \cdot 0.0015^{3}}=0.22 \mathrm{MPa}
\end{aligned}
$$

The torque:

$T=T A+T B$
We know $\phi_{G / A}+\phi_{G / B}=0$
$\rightarrow-T_{A} \cdot \frac{0.098}{G \cdot I_{p}}+T_{B} \cdot \frac{0.108}{G \cdot I_{p}}=0$
$\rightarrow T_{A}=0.0346 \mathrm{Nm}, T_{B}=0.031 \mathrm{Nm}$

The maximum torsion stress

$$
\tau_{\max }=\frac{\left(T_{\max } \cdot R\right)}{I_{P}}
$$

Where $I_{P}=\frac{1}{2} \cdot \pi \cdot R^{4} \quad, \mathrm{R}=0.15 \mathrm{~cm}, \mathrm{~T}=0.0346 \mathrm{~N}$
$\rightarrow \tau_{\text {max }}=6.527 \mathrm{MPa}$

Shear force:

fb
$\sum \mathrm{Fx}=0 \rightarrow \mathrm{fa}+\mathrm{fb}-\mathrm{F}=0$
$\sum \mathrm{Ma}=0 \rightarrow-0.098^{*} \mathrm{~F}+\mathrm{fb}{ }^{*} 0.206=0$
$\rightarrow \mathrm{fb}=2.96 \mathrm{~N}, \mathrm{fa}=3.263 \mathrm{~N}$

The moment

The max shear stress:

$\tau_{M A X}=\frac{V_{\max } \cdot Q}{I \cdot t}$.
Where $\mathrm{Q}=\frac{2}{3} R^{3}, \mathrm{I}=\frac{1}{4} \cdot \pi \cdot R^{4} \quad, \mathrm{t}=2 \mathrm{R}$
$\rightarrow \tau_{M A X}=\frac{V_{\max } \cdot \frac{2}{3} \cdot R^{3}}{\frac{1}{4} \cdot \pi R^{4} \cdot 2 R}=\frac{4 \cdot V_{\max }}{3 \cdot \pi \cdot R^{2}}=\frac{4 \cdot 3.26}{3 \cdot \pi \cdot 0.0015^{2}}=0.614 \mathrm{MPa}$

Question 3

Calculations Sankeydiagram

Solarpanel

Total surface RWE solarcells
$=$ number of cells*surface cell $=280 * 0.003018 \mathrm{~m}^{2}=0.84504 \mathrm{~m}^{2}$
Total surface Emcore solarcells
$=2578^{*} 0.002756=7.104986 \mathrm{~m}^{2}$
The maximum of power delivered by the solarcells is calculated by:
$\mu=P_{\text {MPP }} /(A c * E)$
$\mu=$ effiency
$\mathrm{P}_{\mathrm{MPP}}=$ maximum power (W)
Ac = surface solarcells $\left(\mathrm{m}^{2}\right)$
$\mathrm{E}=$ irradtiation $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
Transformed to get P
$P_{\text {MPP,RWe }}=0.30^{*} 0.84504 * 1000=253.51 \mathrm{~W}$
$\mathrm{P}_{\text {MPP, Emcore }}=0.245 * 7.104968 * 1000=1740.72 \mathrm{~W}$
$P_{\text {Totaal }}=253.51+1740.72=1994.23 \mathrm{~W}$

Motor - Controller - transmission

Average motor efficiency $=0.95$
Average controller efficiency $=0.99$
$P_{\text {motor, useful }}=1994.23^{*} 0.95^{*} 0.99=1875.57$
$P_{\text {motor }, \text { used }}=1994.23-1875.57=118.66 \mathrm{~W}$

Rolling resistance

$\mathrm{F}_{\text {roll }}=\mathrm{m}^{*} \mathrm{~g}^{*} \mathrm{C}_{\text {rr }}$
$\mathrm{F}_{\text {roll }}=$ rolling resistance
$\mathrm{m}=$ mass of Umicar
$\mathrm{g}=$ coefficient of gravity
$\mathrm{C}_{\mathrm{rr}}=$ coefficient of rolling resistance (experimental)
$\mathrm{F}_{\text {roll }}=(225+80)^{*} 9.81 * 0.0056=16.76 \mathrm{~N}$
$P_{\text {roll, used,topspeed }}=16.76^{*} v_{\text {topspeed }}$
$P_{\text {roll, used, half topspeed }}=16.76^{*} \mathrm{~V}_{\text {half topspeed }}$

Air resistance

$F_{\text {lucht }}=A^{*} C_{w}{ }^{*} \rho^{*} v^{2} / 2$
$F_{\text {lucht }}=$ air resistance
A = surface perpendicular to driving direction
$C_{w}=$ coefficient of air resistance(We can calculate C_{w} from the date of the windtunnel (schaled model).

We try to get an kwadratic association between the formula above)
$\mathrm{a}=\mathrm{A}{ }^{*} \mathrm{C}_{\mathrm{w}}{ }^{*} \rho / 2$
$\mathrm{F}=\mathrm{a}^{*} \mathrm{v}^{2}$

We know A, ρ and a, so we calculate C_{w}. The windtunnel data are obtained of a schalemodel of the Umicar(1:3). So we divide the surface by 9.
$C_{w}=0.136$
$P_{\text {air,used; topspeed }}=F_{\text {air,top }} * V_{\text {top }}=(0.81 * 0.136 * 1.2 / 2)^{*} \mathrm{v}^{3}$ top
$P_{\text {air,used, half topspeed }}=0.066 \mathrm{v}^{3}$ half topspeed

Calculating v

$P_{\text {motor, useful }}=P_{\text {roll, used, }}$ topspeed $+P_{\text {air,used,topspeed }}$
$1875.57=16.76 * v_{\text {topspeed }}+0.066 \mathrm{v}^{3}{ }_{\text {topspeed }}$
Solving for v :
$V_{\text {topspeed }}=27.73 \mathrm{~m} / \mathrm{s} *(3600 \mathrm{~s} / \mathrm{h}) * 1 \mathrm{~km} / 1000 \mathrm{~m}=99.84 \mathrm{~km} / \mathrm{h}$
$V_{\text {half topspeed }}=13.87 \mathrm{~m} / \mathrm{s} *(3600 \mathrm{~s} / \mathrm{h}) * 1 \mathrm{~km} / 1000 \mathrm{~m}=49.92 \mathrm{~km} / \mathrm{h}$

Solving roll resistance and air resistance with \mathbf{V}
$P_{\text {roll, used,topspeed }}=464.7 \mathrm{~W}$
$\mathrm{P}_{\text {roll, used, half topspeed }}=232.35 \mathrm{~W}$
$P_{\text {air,used; } \text { topspeed }}=1410.87 \mathrm{~W}$
$P_{\text {air,used, half topspeed }}=176.36 \mathrm{~W}$
$P_{\text {useful, half topspeed }}=1466.86 \mathrm{~W}$

Sankeydiagrams

Topspeed

Half topspeed

Question 3

