Derivatives (2A)

- Partial Derivative
- Directional Derivative
- Tangent and Normal Planes

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Partial Derivatives

Function of one variable $\quad y=f(x)$

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Function of two variable $\quad z=f(x, y)$

$$
\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

treating y as a constant

$$
\frac{\partial z}{\partial y}=\lim _{\Delta x \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

treating x as a constant

Partial Derivatives Notations

Function of one variable $\quad y=f(x)$

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Function of two variable $\quad z=f(x, y)$

$$
\frac{\partial z}{\partial x}=\frac{\partial f}{\partial x}=z_{x}=f_{x} \quad \frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

treating y as a constant

$$
\frac{\partial z}{\partial y}=\frac{\partial f}{\partial y}=z_{y}=f_{y} \quad \frac{\partial z}{\partial y}=\lim _{\Delta x \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

treating x as a constant

Higher-Order \& Mixed Partial Derivatives

Second-order Partial Derivatives

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) \quad \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)
$$

Third-order Partial Derivatives

$$
\frac{\partial^{3} z}{\partial x^{3}}=\frac{\partial}{\partial x}\left(\frac{\partial^{2} z}{\partial x^{2}}\right) \quad \frac{\partial^{3} z}{\partial y^{3}}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} z}{\partial y^{2}}\right)
$$

Third-order Partial Derivatives

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)
$$

Chain Rule (1)

Function of two variable

$$
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial x}
$$

$$
\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial y}
$$

Chain Rule

Function of two variable $\quad z=f(u, v)$

$$
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial x}
$$

$$
\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial y}
$$

Chain Rule

Function of two variable $\begin{aligned} y & =f(u, v) \\ & u=g(x, y) \quad v=h(x, y)\end{aligned}$

Line Equations (2)

Line Equations (2)

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] D.G. Zill, "Advanced Engineering Mathematics"

