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● Closed form expression
● Recurrence expression
● Mathematical Induction

Sequence (4A)
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Arithmetic Progression   Closed Form Expression –

+2

● common difference: d = 2
● first term: a = 1

+2

+2

+2

+2

+2

1 2 3 4 5 6 7

index

a1

a2

a3

a4

a5

a6

a7

an = a n−1⋅d

a1=1

a2=3

a3=5

a4=7

a5=9

a6=11

a7=13

◀ closed form expression

n = 1, 2, 3, ⋯
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Arithmetic Progression   Recurrence Expression –

● common difference: d
● first term: a 

an1 = an  d

a1

an

an+1

◀ recurrence expression

n = 1, 2, 3, ⋯

a1 = a

a

d

an = a n−1⋅d

◀ closed form expression

n = 1, 2, 3, ⋯

(+) operation

(X, +) operations
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Arithmetic Progression   Recursive Computation –

● common difference: d
● first term: a 

a5 = 2 a4

= 2 2 a3

= 2 2 2  a2

= 2 2 2  2 a1

= 2 2 2  2 1

= 2 2 2  3

= 2 2 5
= 2 7

= 9

an1 = an  d

◀ recurrence expression

n = 1, 2, 3, ⋯

a1 = a

a4 = 2  a3

a3 = 2 a2

a2 = 2 a1

a1 = 1

a2 = 3

a3 = 5

a4 = 7

a5 = 9
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an = a n−1⋅d

◀ closed form expression

n = 1, 2, 3, ⋯

Arithmetic Progression   Iterative Computation –

● common difference: d
● first term: a 

yes

k=1?

A0
kn

AAa

(n-1) 
times

a5 = 2 2 2 2  1

(n-1) 
times

AAd
kk−1
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Geometric Progression  Closed Form Expression–

● common ratio: r = 2
● first term: a = 1

1 2 3 4 5index

x2

x2

x2

a1

a2

a3

a4

a5

x2

an = a⋅rn−1

1

2

2

4

4

8 8

16

a2=2

a3=4

a3=8

a4=16

◀ closed form expression

an1 : an

= r : 1
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Geometric Progression  Recurrence Expression–

● common ratio: r
● first term: a

an = a⋅rn−1

an

an+1

a1  = a

◀ recurrence expression

◀ closed form expression

n = 1, 2, 3, ⋯

(X) operation

(X, Exp) operations

an1 : an

an1 = r⋅an

n = 1, 2, 3, ⋯

a1 = a
= r : 1
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Geometric Progression   Recursive Computation –

● common ratio: r
● first term: a 

◀ recurrence expression

an1 = r⋅an

n = 1, 2, 3, ⋯

a1 = a

a5 = 2 ⋅ a4

= 2 ⋅ 2 ⋅ a3

= 2 ⋅ 2 ⋅ 2 ⋅ a2

= 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ a1

= 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 1

= 2 ⋅ 2 ⋅ 2 ⋅ 2

= 2 ⋅ 2 ⋅ 4
= 2 ⋅ 8

= 16

a4 = 2 ⋅ a3

a3 = 2 ⋅ a2

a2 = 2 ⋅ a1

a1 = 1

a2 = 2

a3 = 4

a4 = 8

a5 = 16
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an = a⋅rn−1

◀ closed form expression

n = 1, 2, 3, ⋯

Geometric Progression   Iterative Computation –

● common ratio: r
● first term: a 

yes

k=1?

A0
kn

(n-1) 
times

a5 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 1

(n-1) 
times

A r⋅A
kk−1

Aa⋅A
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Geometric Progression  Difference (1)–

● common ratio: r = 2
● first term: a = 1

1 2 3 4 5index

x2

x2

x2

a1

a2

a3

a4

a5

x2

an = a⋅rn−1

a2=2

a3=4

a3=8

a4=16

◀ closed form expression

an1

an
= r

an2−an1

an1−an
= r

a2-a1 =1
a3-a2 =2

a4-a3 =4

a5-a4 =8
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Geometric Progression  Difference (2)–

a1 = a

b1 = a2 − a1 = a⋅r−1

a2 = a⋅r

b2 = a3 − a2 = a⋅r−1⋅r

a3 = a⋅r2

b3 = a4 − a3 = a⋅r−1⋅r2

a4 = a⋅r3

b4 = a5 − a4 = a⋅r−1⋅r3

a5 = a⋅r4

b5 = a6 − a5 = a⋅r−1⋅r4

an = a⋅rn−1

bn = an1 − an = a⋅r−1⋅rn−1

● common ratio: r = 2
● first term: a = 1

1 2 3 4 5index

x2

x2

x2

a1

a2

a3

a4

a5

x2
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Logical Reasoning (1)

Deduction: means determining the conclusion. (P ⇒ Q)

It is using the rule and its precondition to make a conclusion.

Induction: means determining the rule. (P ⇒ Q)

It is learning the rule after numerous examples of the conclusion 

following the precondition.

Abduction: means determining the precondition. (P ⇒ Q)

It is using the conclusion and the rule to support that the 

precondition could explain the conclusion.
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Logical Reasoning (2)

Deduction: Mathematicians commonly use this style of reasoning

● When it rains, the grass gets wet. 

● It rains. 

● Thus, the grass is wet.

Abduction: Diagnosticians and detectives commonly use this style of reasoning

● When it rains, the grass gets wet. 

● The grass is wet

● Thus, it must have rained.

Induction: Scientists commonly use this style of reasoning

● The grass has been wet every time it has rained. 
Observation 1: The grass has been wet when it has rained heavily. 

Observation 2: The grass has been wet when it has rained lightly. 

Observation 3: The grass has been wet when it has rained moderately. 

...

● Thus, when it rains, the grass gets wet.

(P ⇒ Q)

(P ⇒ Q)

(P ⇒ Q)
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Mathematical Induction - Principle

The Principle of Mathematical Induction: 

Let Pn be a statement involving the positive integer n. 

If

● P1 is true, and

● the truth of the statement Pk implies 

  the truth of the statement Pk+1, 

  for every positive integer k,
then 

the statement Pn is true for all positive integers n.
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Mathematical Induction  How to prove–

Proof by Mathematical Induction

To prove that Pn is true:  

Show that 

●  P1 is true.

●  if Pk is assumed to be true, 

  then Pk+1 is also true, 

  for every positive integer k.
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Mathematical Induction  Example (1)–

fk1

fk

fn = gn

gk

gk1

=

=

n= 1, 2, 3,⋯

To prove that Pn is true:  

f1 g1=
● Show  P1 is true.

● If Pk is assumed to be true, then Pk+1 is also true, 

for any arbitrary k.
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Mathematical Induction  Example (2)–

fn1

gn1

=

● Consider f(n) and g(n) which have the following properties.

fn  an1

gn  an1=

● then we can show f k1fk gk gk1= =

f k1

fk  ak1

gk1

gk  ak1



Sequence 19 Young Won Lim
08년 8월 1일

Mathematical Induction  Example (3)–

● An example class of 

such functions are:

Sn = ∑
i=1

n

ai

Sn1 = Sn  an1

∑
i=1

n1

ai = ∑
i=1

n

ai  an1

f(n+1)

g(n+1)

1
1⋅2


1
2⋅3


1
3⋅4

⋯
1

nn1
=

n
n1

∑
i=1

n

5⋅6i
= 6 6n

− 1

Ex1)

Ex2)
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Mathematical Induction  Example (4)–

● To prove Sn = ∑
i=1

n

ai

Sk1 ∑
i=1

k1

ai

Sk  ak1 ∑
i=1

k

ai  ak1

S1 a1
● Show

● Show
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Mathematical Induction  Ex 1)–

● Prove

● n = 1

● n = k

1
1⋅2


1
2⋅3


1
3⋅4

⋯
1

nn1
=

n
n1

1
1⋅2

=
1

11

1
1⋅2


1
2⋅3


1
3⋅4

⋯
1

kk1
=

k
k1

1
1⋅2


1
2⋅3


1
3⋅4

⋯
1

kk1


1
k1k2

=
k

k1


1
k1k2

=
kk2 1
k1k2

=
k1
k2

● n = k+1
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Mathematical Induction  Ex 2)–

● Prove

● n = 1

● n = k

5⋅6 = 66−1

● n = k+1

∑
i=1

n

5⋅6i
= 6 6n

− 1

∑
i=1

k

5⋅6
i
= 6 6

k
− 1

∑
i=1

k1

5⋅6i
= ∑

i=1

k

5⋅6i
 5⋅6k1

= 66k
− 1  5⋅6k1

= 6k1
− 6 5⋅6k1

= 66k1
− 1
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