Probability, distribution, density ^{1.1}
<u>Events (samples, outcomes)</u>
ω = an event (or sample, or outcome)
<u>Ex</u> : Tossing a coin, $\omega = ext{heads}$ or $\omega = ext{tails}$
\omega = {\rm heads} \omega = {\rm tails}
Ω = set of all events (samples, outcomes), called "sample space" (statistical theory) or "outcome space" (probability theory).
(Xiu 2010 p.9, Shao 2007 p.1)
Xiu 2010, <u>Numerical methods for stochastic</u> computations: A spectral method approach. Shao 2007, <u>Mathematical statistics</u> , 2nd ed.
$ \underline{Ex:} \ \underline{Tossing a coin, } \Omega = \{ \text{heads, tails} \}_{\texttt{Omega = } \{\texttt{rm heads}, \texttt{rm tails} \}} $
Thus $\omega\in\Omega$ means the event ω is either
"heads" (obverse) or "tails" (reverse). ///
n i p.//en.wikipedid.org/wiki/com

	1.2
\mathcal{F}	= collection of all subsets of Ω (mathical F
<u>Ex:</u>	$\mathcal{F} = \{\emptyset, \text{heads}, \text{tails}, \Omega\} ///$

Probability of an event
$$\omega$$
 belonging to an element
 $A \in \mathcal{F}$ is a non-negative number ("measure"), A vin vinatheal F
denoted by $P(\omega \in A) = P(A)$ P($\omega \in A$) = $P(A)$
 $P: \mathcal{F} \to \mathbb{R}_0^+$ set of non-negative real numbers
 $[A \in \mathcal{F}] \mapsto [P(A) \in \mathbb{R}_0^+]$
(A vin vierheal F vinghtarrow vinatheb R.0*+
 $[A \in \mathcal{F}] \mapsto [P(A) \in \mathbb{R}_0^+]$
(A vin vierheal F vinghtarrow vinatheb R.0*+
 $P(\text{beads}) = P(\text{tails}) = \frac{1}{2}$
 $P((\forall \text{medds})) = P((\text{tails})) = \frac{1}{2}$
 $P((\forall \text{medds})) = P((\forall \text{medds})) = P((\forall \text{medds})) = V(\forall \text{medd})) = V(\forall \text{medd})) = 0$
 $\Omega = \{\text{heads, tails}\} = \{\text{heads}\} \cup \{\text{tails}\}$
 $Volegae = V(\forall \text{medds}), (\forall \text{medds}) + P(\text{tails}) = 1$
 $P(\omega \in \Omega) = P(\text{heads}) + P(\text{tails}) = 1$
Probability that the event ω is either heads or tails.

	4.1
U	$=$ "Or" \cup \equiv \color{red}{\rm ``or"}
<u>Ex:</u>	$\{\text{heads}\} \cup \{\text{tails}\} = \Omega \text{ heads or tails} $
$\cap \equiv$	= "and" \cap \equiv \color{red}{\rm`` and"}
<u>Ex:</u>	$\{ ext{heads}\} \cap \{ ext{tails}\} = \emptyset$ heads and tails
<u>Ex:</u>	A dice with 6 facets
Ω	$=\{1,2,3,4,5,6\}$ \Omega = \{ 1,2,3,4,5,6 \}
$\{6\}$	${}\in \mathcal{F} = \{3,6\} \in \mathcal{F}$ \{ 3,6 \} \in \mathcal F
A := \{ 2	$= \{2,3,5\} \in \mathcal{F}_{\{1,3,4,6\}} \in \mathcal{F}_{\{3,5,4,6\}} \in \mathcal{F}_{\{3,5,5\}}$
P($\omega \in A) = P(2) + P(3) + P(5)$
P (\omega)	$(\sin A) = P(2) + P(3) + P(5) = 3 \sqrt{\frac{1}{2} - \frac{1}{2}}$

Random variable usually denoted in capital letters

5.2
Ex: Turbulent flows

$$\Omega$$
 can be thought of as a set of repeated
experiments (samples) to verify, say, a
hypothesis or observation on a given flow.
 $\Omega = \{\omega_1, \omega_2, \cdots, \omega_{n_{exp}}\}$
 $\sum_{were verify (verage 2, verdets, verage (n_exp)) (very(v))$
 n_{exp} total number of repeated experiments, e.g.,
until the standard deviation is small enough
compared to the mean
 x_2
 x_1
 x_2
 x_2
 x_1
 x_2
 x_1
 x_2
 x_1
 x_2
 x_1
 x_2
 x_1
 x_2
 x_1
 x_2
 x_2
 x_1
 x_2
 x_1
 x_2
 x_2
 x_1
 x_2
 x_1
 x_2
 x_2
 x_1
 x_2
 x_2
 x_3
 x_1
 x_2
 x_1
 x_2
 x_3
 $x_$

Note: Technically, a random variable is the mapping
("measurable function")

$$X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}) \qquad (1)$$

$$X: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}) \qquad (1)$$

$$X: (\Omega, \mathcal{F}) \text{ Event space } \Omega \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ Set of real numbers } \mathbb{R} \text{ endowed with } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) \text{ set of finite open of finite } \sigma\text{-algebra } \mathcal{F}$$

$$(\mathbb{R}, \mathcal{B}) = \sigma\left(\left\{(a, b]: a, b \in \mathbb{R}\right\}\right) \qquad (2)$$

$$\sigma\text{-algebra } \text{ finite half-open interval in } \mathbb{R}$$

$$\{(a, b]: a, b \in \mathbb{R}\} \text{ set of finite open intervals in } \mathbb{R}$$
This choice of \mathcal{B} allows for the probability of $X \in (a, b]$, i.e., $P(X \in (a, b])$.
$$(\text{Xiu 2010 p.11}) \qquad ///$$

$$P_X \text{ Law or distribution of } X$$

$$P_X = P \circ X^{-1} : \mathcal{B} \to \mathbb{R}_0^+ \qquad (1)$$

$$P_X = P \circ X^{-1} : \mathcal{B} \to \mathbb{R}_0^+ \qquad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

$$P_X = P \circ X^{-1} \quad \mathcal{B} \to \mathbb{R}_0^{-1} \quad (1)$$

Note:

In case events were already representable by real numbers, then the event space is already $\Omega \equiv \mathbb{R}$.

It is then not necessary to mention ω , but directly X. An example of such random variable is a velocity component in a turbulent flow.

Pope 2000 p.xx ///

Pope 2000, Turbulent flows.

$$F_X(x) \text{ Cumulative distribution function (cdf)}$$

$$F_X(x) := P_X((-\infty, x]) \stackrel{(1)}{=} P_X(X \le x)$$

$$F_X(x) := P_X((-\log x)) \stackrel{(1)}{=} P_X(X \le x)$$

$$f_X(x) \text{ Probability density function (pdf)}$$

$$f_X(x) := \frac{d}{dx} F_X(x) \qquad (2)$$

$$F_X(x) := \int_{-\infty}^x f_X(t) dt \qquad (3)$$

$$F_X(x) = \int_{-\infty}^x f_X(t) dt \qquad (3)$$

<u>Note</u>: Notation X and x

In recent literature, an uppercase letter, e.g., $X\,$, is used to designate a random variable, whereas the corresponding lowercase letter, e.g., $x\,$, is used to designate the real variable that is the upper bound of X.

Kolmogorov (Kolmo) 1933, Foundations of the theory of probability. Famous work influencing subsequent mathematical probability and statistics literature.

Normal (Gaussian) distribution

http://en.wikipedia.org/wiki/Normal_distribution

12.1

10 Deutsch mark bank note

Weibull distribution, exponential distribution

Application: Testing and debugging of large software (~ 7×10^6 non-commentary source lines)

Observation: Rate of fault detection (slope) slow at first, then rises up quickly, then decreases with time.

Major decision: When to stop testing?

Important factor: Number of new faults detected if testing period were extended. Need model to predict.

Lawless & Cook 2007 p.5, p.368; Dalal & McIntosh 1994

3 stages of fault-detection rate:

Stage 1: Low fault-detection rate at the beginning

Stage 2: Increasing and steep fault-detection rate in the middle

Stage 3: Slowing fault-detection rate at the end

 $F_X (x) = 1 - {\rm exp} \left(- \displaystyle \frac{x^{q_1}}{q_2} \right)$

$\operatorname{\mathsf{HW}}$ x.x: Find out the meaning of the parameter q_2 in

Provide plots for visual explanation.

```
Take successive derivatives of F_X(x) to propose logical demarcations for the different stages, i.e., Stage 1 goes from what value to what value, etc. ///
```

Formula to fit data points

$$z(x) = p_3 \left[1 - \exp\left(-\frac{x}{p_2}\right)^{p_1} \right]$$
 (1)

z(x) = p_3 \left[1 - {\rm exp} \left(- \frac{x}{p_2} \right)^{p_1} \right]

Least square curve fitting: Legendre 1805 Gauss 1795

Stiegler 1986 p.15

Stiegler 1986, The history of statistics.

Nonlinear problem: Numerical solution by the Newton-Raphson-Simpson method; need initial guess.

Initial guess:
$$p_{init} = [2, 600, 870]$$
 (2)

How?

p_{init} = [2, 600, 870]

Result (using Octave):

 $p_{out} = [1.6407, 740.2473, 933.7323]$

Least square curve was plotted against the data.

μ_X	$X = \mathbb{E}(X(\omega)) = \sum_{k=1}^{n} X(\omega_k) w(\omega_k)$ $\lim_{X = \{\text{Mathbb E}(X (\text{Nomega})) = \text{Nom}_{k=1}^{n} \times (\text{Nomega}, w(\text{Nomega}, k)) = \text{Nom}_{k=1}^{n} \times (\text{Nomega}, k) = \text{Nom}_{k=1}^{n} \times (\text{Nom}_{k=1}^{n} \times (\text{Nomega}, k)) = \text{Nom}_{k=1}^{n} \times (\text{Nomega}, k) = \text{Nom}_{k=1}^{n} \times (\text{Nomega}, k) = \text{Nom}_{k=1}^{n} \times (\text{Nomega}, k) = \text{Nom}_{k=1}^{n} \times (\text{Nom}_{k=1}^{n} \times (\text{Nomega}, k)) = \text{Nom}_{k=1}^{n} \times (\text{Nomega}, k) = \text{Nom}_{k=1}^{n} \times (\text{Nom}_{k=1}^{n} \times$
Note	