Probability, distribution, density

Events (samples, outcomes)

$\omega=$ an event (or sample, or outcome)
Ex: Tossing a coin, $\omega=$ heads or $\omega=$ tails
\omega $=\{\backslash r m$ heads $\}$
\omega $=\{$ \rm tails $\}$
$\Omega=$ set of all events (samples, outcomes), called "sample space" (statistical theory) or "outcome space" (probability theory).
(Xiu 2010 p.9, Shao 2007 p.1)
Xu 2010, Numerical methods for stochastic computations: A spectral method approach.
Shao 2007, Mathematical statistics, Ind ed.
Ex: Tossing a coin, $\Omega=\{$ heads, tails $\}$
\backslash Omega $=\backslash\{\{\backslash r m$ heads $\},\{\backslash r m$ tails $\} \backslash\}$
Thus $\omega \in \Omega$ means the event ω is either \omega \in \Omega "heads" (obverse) or "tails" (reverse).

$\mathcal{F}=$ collection of all subsets of Ω

Ex: $\mathcal{F}=\{\emptyset$, heads, tails, $\Omega\}$
//I

Note: (\mathcal{F}\)iscalleda"sigma-field"or"sigma-algebra"writtenasσ-fieldorσ-algebraσismnemonicfor"S",and"Sum",duetoproperty$\bigcupA_{i}\in\mathcal{F},\forallA_{i}\subset\mathcal{F}$$i$Idisplaystyle\bigcup_iA_i\in\mathcalF
,
oralA_i\subset\mathcalF(Xiu2010p.10,Shao2007p.2,forformaldefinition)ie.,sumorunionofanysubsetsof\mathcal{F}isasubsetof\mathcal{F}.Recallthealgebraontherealline\mathbb{R}lusepackage\{amssymb\}\mathbbRwithoperations+,-,x,l,e.g.,$1+2\in\mathbb{R}$$1+2\backslashin\backslashmathbbR$Ex:$\emptyset\cup\Omega=\Omega\in\mathcal{F}$$\emptyset\cup$heads$=$heads$\in\mathcal{F}$lemptyset$\backslash\operatorname{cup}\{\backslashrm$heads$\}=\{\backslashrm$heads$\}\in\backslashmathcal~F$$\Omega\cup$heads$=\Omega\in\mathcal{F}$Omega$\backslashcup\{\backslashrm$heads$\}=1$Omega$\backslashin\backslash$mathcal$F$heads$\cap$tails$=\emptyset\in\mathcal{F}$$\{\backslashrm$heads$\}\cap\{\backslashrm$tails$\}=$\emptyset\in$\backslash$mathcal$F$$\cap$isalsoavalidoperationin$\mathcal{F}$.undefined

Probability of an event ω belonging to an element
$A \in \mathcal{F}$ is a non-negative number ("measure"),
A \in \backslash math cal F
denoted by $P(\omega \in A)=P(A)$
$P($ \omega $\backslash \operatorname{in} A)=P(A)$
$P: \mathcal{F} \rightarrow \mathbb{R}_{0}^{+}$set of non-negative real numbers

$[A \in \mathcal{F}] \mapsto\left[P(A) \in \mathbb{R}_{0}^{+}\right]$
[A \in \backslash math cal F] \backslash maps to $\left[P(A)\right.$ \in $\backslash m a t h b b ~ R _0^{\wedge}+$]
Ex: $P($ heads $)=P($ tails $)=\frac{1}{2}$
$P(\{\backslash r m$ heads $\})=P(\{\backslash r m$ tails $\})=\backslash \operatorname{frac}\{1\}\{2\}$
$\Omega=\{$ heads, tails $\}=\{$ heads $\} \cup\{$ tails $\}$ \backslash mega $=\backslash\{\{\backslash r m$ heads $\},\{\backslash r m$ tails $\} \backslash\}=\backslash\{\{\backslash r m$ heads $\} \backslash\} \backslash$ cup $\backslash\{\{\backslash r m$ tails $\} \backslash\}$
$P(\omega \in \Omega)=P($ heads $)+P($ tails $)=1$ $P($ \omega \in \Omega $)=P(\{\backslash r m$ heads $\})+P(\{\backslash r m$ tails $\})=1$

Probability that the event ω is either heads or tails.

Ex: $\{$ heads $\} \cup\{$ tails $\}=\Omega$ heads or tails

$\cap \equiv$ "and"

Ex: $\{$ heads $\} \cap\{$ tails $\}=\emptyset$ heads and tails $\backslash\{\{\backslash \mathrm{rm}$ heads $\} \backslash\}$ cap $\backslash\{\{\backslash \mathrm{rm}$ tails $\} \backslash\}=$ lemptyset

Ex: A dice with 6 facets
$\Omega=\{1,2,3,4,5,6\}$
\backslash Omega $=\backslash\{1,2,3,4,5,6 \backslash\}$
$\{6\} \in \mathcal{F} \quad\{3,6\} \in \mathcal{F}$
$\backslash\{3,6 \backslash\} \backslash$ in \backslash math cal F
$A:=\{2,3,5\} \in \mathcal{F} \quad\{1,3,4,6\} \in \mathcal{F}$
$A:=\backslash\{2,3,5 \backslash\}$ in \backslash mathcal F
$\backslash\{1,3,4,6 \backslash\} \backslash$ in \backslash math cal F
$P(\omega \in A)=P(2)+P(3)+P(5)$
$P($ omega $\operatorname{lin} A)=P(2)+P(3)+P(5)=3 \backslash f r a c 16=\backslash f r a c 12$

$$
=3 \frac{1}{6}=\frac{1}{2}
$$

Random variable usually denoted in capital letters

$X=$ random variable $\quad X: \Omega \rightarrow \mathbb{R}$
X: \Omega \to \mathbb R

$$
\omega \mapsto X(\omega)
$$

\omega \mapsto X(\omega)
$X(\omega)=$ (arbitrary) number selected to represent each event ω in Ω

Ex: Typically X (heads) $=1$
$X(\{\backslash r m$ heads $\})=1$
$X($ tails $)=0$
$X(\{\backslash r m$ tails $\})=0$

But it is also possible to select (even though not a good choice, since not as "mnemonic" as $\{0,1\}$)

$$
\begin{aligned}
& X(\text { heads })=5 \\
& X(\text { tails })=-3
\end{aligned}
$$

Ex: Turbulent flows

Ω can be thought of as a set of repeated experiments (samples) to verify, say, a hypothesis or observation on a given flow.
$\Omega=\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n_{e x p}}\right\}$
\backslash mega $=$ left $\backslash\left\{\right.$ lomega_1, \omega_2, \cots, $\left.\backslash o m e g a _\left\{n _\{\exp \}\right\} \backslash r i g h t \backslash\right\}$
$n_{\text {exp }}$ total number of repeated experiments, e.g., until the standard deviation is small enough x_{2} compared to the mean

$$
\underbrace{\sim x} x_{1}
$$

U_i (x, t, lomega_k)
$U_{i}\left(x, t, \omega_{k}\right)$ ith velocity component (a random variable) at (x, t) in experiment ω_{k}

Note: Technically, a random variable is the mapping ("measurable function")
$X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B})$
X: (\Omega, \mathcal F) \to (\mathbb R, \mathcal B)
(Ω, \mathcal{F}) Event space Ω endowed with σ-algebra \mathcal{F}
$(\mathbb{R}, \mathcal{B})$ Set of real numbers \mathbb{R} endowed with "Borel σ-algebra" \mathcal{B} (sigma-algebra of finite open subsets of \mathbb{R}) (Shoo 2007 p.7)
Ex: $\quad \mathcal{B}=\sigma(\{\underline{(a, b]}: a, b \in \mathbb{R}\})$
$\uparrow<$
\backslash mathcal $B=\backslash$ sigma $\backslash \operatorname{Big}(\backslash\{(a, b]: a, b \backslash i n \backslash m a t h b b R \backslash\} \backslash B i g)$
σ-algebra finite half-open interval in \mathbb{R}
$\{(a, b]: a, b \in \mathbb{R}\}$ Set of finite open intervals in
This choice of \mathcal{B} allows for the probability of $X \in(a, b]$, ie., $P(X \in(a, b])$.
P_{X} Law or distribution of X

$$
\begin{equation*}
P_{X}=P \circ X^{-1}: \mathcal{B} \rightarrow \mathbb{R}_{0}^{+} \tag{1}
\end{equation*}
$$

$P-X=P \backslash \operatorname{circ} X^{\wedge}\{-1\}:$ Imathcal $B \backslash$ to \backslash mathbb $R_{-} 0^{\wedge}+$

$$
X^{-1}
$$

In practice, only to refer to an open interval in \mathcal{B}
$[\underbrace{(a, b]} \in \mathcal{B}] \mapsto\left[P_{X}((a, b]) \in \mathbb{R}_{0}^{+}\right]$
half-open interval in \mathcal{B}
$[(a, b] \backslash$ in \backslash mathcal $B] \backslash$ mapsto $\left[P _X((a, b]) \backslash i n \backslash\right.$ mathbb $\left.R_{-} 0^{\wedge}+\right]$
$P_{X}((a, b]) \equiv P_{X}(X(\omega) \in(a, b])$
$P _X((a, b])$ lequiv $P _X(X($ lomega $) \operatorname{lin}(a, b])$
i.e., the probability that $a<X(\omega) \leq b$

Note:

In case events were already representable by real numbers, then the event space is already $\Omega \equiv \mathbb{R}$.
It is then not necessary to mention ω, but directly X. An example of such random variable is a velocity component in a turbulent flow.

Pope 2000 p.xx

Pope 2000, Turbulent flows.
$F_{X}(x)$ Cumulative distribution function (cdf)
$F_{X}(x):=P_{X}((-\infty, x]) \stackrel{(1)}{=} P_{X}(X \leq x)$
$F _X(x):=P _X((-\backslash i n f t y, x])=P _X(X \backslash e x)$
$f_{X}(x)$ Probability density function (pdf)
$f_{X}(x):=\frac{d}{d x} F_{X}(x)$
$f _X(x):=$ \displaystyle $\backslash f r a c\{d\}\{d x\} F _X(x)$
$F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$

Note: Notation X and x
In recent literature, an uppercase letter, e.g., X, is used to designate a random variable, whereas the corresponding lowercase letter, e.g., x, is used to designate the real variable that is the upper bound of X.
Kolmogorov (Kolmo) 1933, Foundations of the theory of probability. Famous work influencing subsequent mathematical probability and statistics literature.

$$
\begin{aligned}
& \underbrace{F^{(x)}(a)}_{\text {cdf }}=\int_{-\infty}^{a} \underbrace{f^{(x)}(a)}_{\text {Kolmo } 1933 \text { p. } 24} d a \underbrace{\text { (1) }}_{\text {1) }} \\
& \text { cdf } \\
& \text { pdf }
\end{aligned}
$$

Modern notation, more mnemonic, is close to that chosen by Kolmo 1933.

Note: Terminologies
$F_{X}(x)=$ Cumulative distribution function (cdf) Shoo 2007 p. Pope 2000 p.

Distribution function Kolmo 1933 p. 19 Xu 2007 p.
$f_{X}(x)=$ Probability density function (pdf) Shoo 2007 p. Pope 2000 p.

Probability mass function
?? 20?? p. ???? 20?? p.
Density function
Kolmo 1933 p. 19 Xu 2007 p.

Normal (Gaussian) distribution

$f_{-} X(x)=\backslash$ frac\{1\}\{\sqrt\{2\pi\sigma^2\}\}\{\rm exp\} $\operatorname{Veft}\left\{\left\{\left(-\operatorname{lfrac}\left\{(x-\operatorname{lmu})^{\wedge} 2\right\}\{2 \backslash\right.\right.\right.$ sigma^2\} \} \right]

10 Deutsch mark bank note

Gaussian (normal) pdf
 GN4480100S8
 Deusche Bundesbark
 belke thaus FanWurtam Main Soptarber 20%
 $-$
 Gauss

http://en.wikipedia.org/wiki/Deutsche_Mark
http://en.wikipedia.org/wiki/Federal_Reserve_Note

Weibull distribution, exponential distribution

Application: Testing and debugging of large software (~ $7 \times 10^{\wedge} 6$ non-commentary source lines)

Cumulative faults detected

Observation: Rate of fault detection (slope) slow at first, then rises up quickly, then decreases with time. Major decision: When to stop testing?
Important factor: Number of new faults detected if testing period were extended. Need model to predict.
Lawless \& Cook 2007 p.5, p.368; DalaI \& McIntosh 1994

3 stages of fault-detection rate:
Stage 1: Low fault-detection rate at the beginning
Stage 2: Increasing and steep fault-detection rate in the middle
Stage 3: Slowing fault-detection rate at the end

$$
\begin{equation*}
F_{X}(x)=1-\exp \left(-\frac{x^{q_{1}}}{q_{2}}\right) \tag{1}
\end{equation*}
$$

F_X $(x)=1-\{\backslash r m$ exp $\} \backslash \operatorname{left}\left(-\backslash d i s p l a y s t y l e \backslash f r a c\left\{x^{\wedge}\left\{q _1\right\}\right\}\left\{q _2\right\} \backslash r i g h t\right)$

HW x.x: Find out the meaning of the parameter q_{2} in

Provide plots for visual explanation.
Take successive derivatives of $F_{X}(x)$ to propose logical demarcations for the different stages, ie., Stage 1 goes from what value to what value, etc.

Formula to fit data points

$$
\begin{equation*}
z(x)=p_{3}\left[1-\exp \left(-\frac{x}{p_{2}}\right)^{p_{1}}\right] \tag{1}
\end{equation*}
$$

$z(x)=p _3 \backslash \operatorname{left}\left[1-\{\backslash r m \exp \} \backslash \operatorname{left}\left(-\backslash f r a c\{x\}\left\{p _2\right\} \backslash r i g h t\right)^{\wedge}\left\{p _1\right\} \backslash r i g h t\right]$
Least square curve fitting: Legendre 1805 Gauss 1795 Stiegler 1986 p. 15
Stiegler 1986, The history of statistics.
Nonlinear problem: Numerical solution by the Newton-Raphson-Simpson method; need initial guess.

Initial guess: $\quad p_{i n i t}=[2,600,870]$
How?
Result (using Octave):
$p_{\text {out }}=[1.6407,740.2473,933.7323]$

Least square curve was plotted against the data.

$\mu_{X}=\mathbb{E}(X(\omega))=\sum^{n} X\left(\omega_{k}\right) w\left(\omega_{k}\right)$
 $$
k=1
$$

$\backslash m u _X=\{\backslash$ mathbb $E\}(X($ lomega $))=\backslash$ displaystyle $\backslash s u m _\{k=1\}^{\wedge}\{n\} X($ \omega_k) $w($ \omega_k)

Note:

