
Descriptives & Graphing	Overview: Descriptives & Graphing
Lecture 3	 Approaching data Descriptive statistics Normal distribution Non-normal distributions The effect of skew on central tendency
Survey Research & Design in Psychology James Neill, 2012	6. Graphical techniques

Clearly report the data's main features

Level of measurement determines type of descriptive statistics and graphs

GOLDEN RULE of DATA ANALYSIS

The level of measurement (see previous lecture) determines which types of descriptive statistics and which types of graphs are appropriate.

13

Levels of measurement and non-parametric vs. parametric

Categorical & ordinal DVs \rightarrow *non-parametric* (Does not assume a normal distribution)

> Interval & ratio DVs → *parametric* (Assumes a normal distribution) → *non-parametric* (If distribution is non-normal)

> > DVs = dependent variables

Parametric statistics

 Procedures which estimate parameters of a population, usually based on the normal distribution

-M, SD, skewness, kurtosis

• t-tests, ANOVAs

-r

• bivariate correlation, linear regression

15

Parametric statistics

- More powerful (more sensitive)
- But they require more assumptions and are more vulnerable to violations of assumptions comapred to nonparametrics statistics

16

14

Non-parametric statistics

(Distribution-free tests)

- Procedures which do not rely on estimates of population parameters
 - -Frequency
 - e.g. sign test, chi-squared
 - -Rank order
 - e.g. Mann-Whitney U test, Wilcoxon matched-pairs signed-ranks test

Univariate descriptive statistics

Number of variables			V
Univariate = one variable	e.g., mean, median, mode, histogram, bar chart, box plot		T u
Bivariate = two variables	e.g., correlation, <i>t</i> -test, scatterplot, clustered bar chart		•
= more than two variables			•
	e.g., reliability analysis, factor analysis, multiple linear regression 19		fc

What do we want described?

The **distributional properties** of underlying variables, based on:

- **Central tendency**(ies): Frequencies, Mode, Median, Mean
- Shape: Skewness, Kurtosis
- **Spread** (dispersion): Min., Max., Range, IQR, Percentiles, Var/SD

for sampled data.

20

Measures of central tendency

Statistics which represent the 'centre' of a frequency distribution:

- -Mode (most frequent)
- -Median (50th percentile)
- -Mean (average)

Which ones to use depends on:

Type of data (level of measurement)

-Shape of distribution (esp. skewness)

Reporting more than one may be appropriate.

21

Measures of central tendency

	Mode	Median	Mean	
Nominal	\checkmark			
Ordinal	\checkmark	\checkmark		
Interval	\checkmark	\checkmark	\checkmark	
Ratio	?	\checkmark	\checkmark	
				22
				22

Measures of shape / spread / dispersion / deviation

• Measures of shape and deviation from the central tendency

Non-parametric Parametric: / non-normal:

- Min and max
- Range
- Percentiles

• SD

Skewness

Kurtosis

23

Measures of spread / dispersion / deviation

	Min/Max, Range	Percentiles	Var/SD
Nominal			
Ordinal	\checkmark	\checkmark	
Interval	\checkmark	\checkmark	\checkmark
Ratio	\checkmark	\checkmark	\checkmark
			24

Describing nominal data

- Nominal = Labelled categories
- Descriptive statistics:
 - -Most frequent? (Mode e.g., females)
 - -Least frequent? (e.g, Males)
 - –Frequencies (e.g., 20 females, 10 males)
 –Percentages (e.g. 67% females, 33% males)
 - -Cumulative percentages
 - -Ratios (e.g., twice as many females as males) 25

Describing ordinal data

- Ordinal = Conveys order but not distance (e.g., ranks)
- Descriptives approach is as for nominal (frequencies, mode etc.)
- Plus percentiles (including median) may be useful

26

Describing interval data

- **Interval** = order and distance, but no true 0 (0 is arbitrary).
- Central tendency (mode, median, mean)
- Shape/Spread (min, max, range, *SD*, skewness, kurtosis)

Interval data is discrete, but is often treated as ratio/continuous (especially for > 5 intervals)

27

Describing ratio data

- Ratio = Numbers convey order and distance, meaningful 0 point
- Descriptives approach is as for interval (i.e., median, mean, SD, skewness etc.)
- Ratios

28

Mode (Mo)

- Most common score highest point in a frequency distribution – a real score – for most no. of participants
- Suitable for all levels of data, but may not be appropriate for ratio
- Not affected by outliers
- Check frequencies and bar graph to see whether it is an accurate and useful statistic.

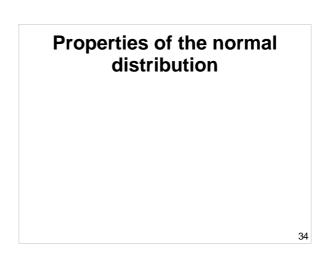
29

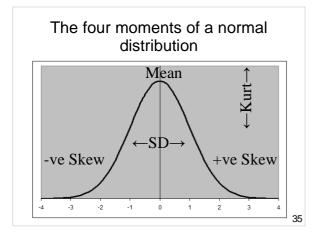
Frequencies

- # of units in each category
- % of units in each category
- Frequency table
- Bar chart or pie graph
- Crosstabs (contingency table) is the bivariate equivalent of frequencies

Median (Mdn)

- Mid-point of distribution (Q2, 50th percentile)
- Not badly affected by outliers
- May not represent the central tendency in skewed data
- If the Median is useful, then consider what other percentiles may also be worth reporting.


31


Summary: Descriptive statistics principles

- Spend 'quality time' investigating (exploring and describing) your data
- Describe the **central tendency** -Frequencies, Percentages -Mode, Median, Mean
- Describe the variability:
 –Min, Max, Range, Quartiles
 –Standard Deviation, Variance

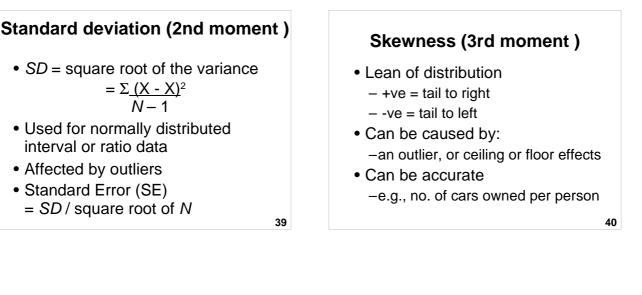
32

Summary: Descriptive statistics & levels of measurement		
	NOIR	
Frequencies	NOI?	
Mode	NOI?	
Median	OIR	
Mean	IR	
Min-Max-IQR	OIR	
SD	IR	33

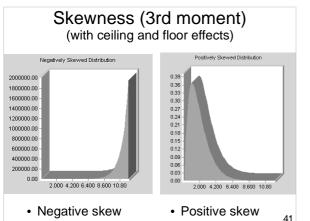
The four moments of a normal distribution

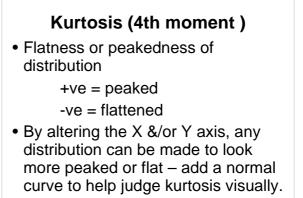
Four mathematical qualities (parameters) can describe a continuous distribution which as least roughly follows a bell curve shape:

- 1st = mean (central tendency)
- 2nd = SD (dispersion)
- 3rd = skewness (lean / tail)
- 4th = kurtosis (peakedness / flattness)

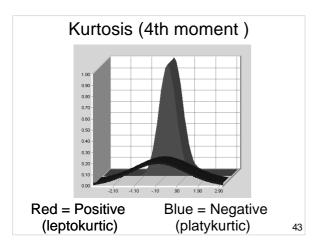

Mean (1st moment)

• Average score


Mean = $\Sigma X / N$


- Use for normally distributed ratio data or interval (if treating it as continuous).
- Influenced by extreme scores (outliers)

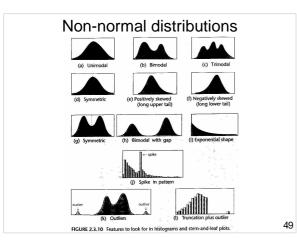
Beware inappropriate averaging... With your head in an oven and your feet in ice you would feel, on average, just fine The majority of people have more than the average number of legs (M = 1.9999).

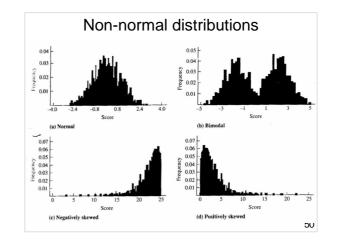


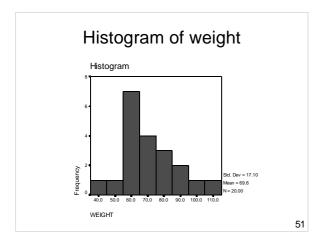
37

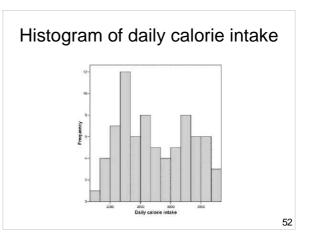
42

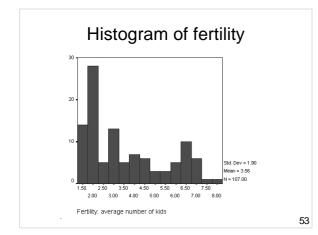
Judging severity of skewness & kurtosis

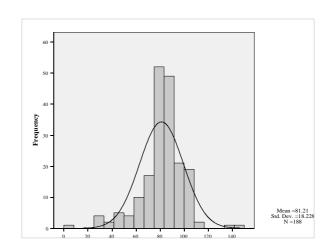

- View histogram with normal curve
- Deal with outliers
- Rule of thumb: Skewness and kurtosis > -1 or < 1 is generally considered to reasonable for parametric inferential statistics

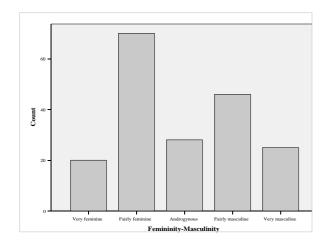

44

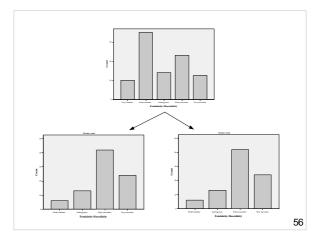

 Significance tests: Tend to be overly sensitive


Areas under the normal curve Areas under the normal curve .40 If distribution is normal (bell-shaped - or close): .30 0.5000 ~68% of scores within +/-1 SD of M SC SC .20 0.8413-~95% of scores within +/- 2 SD of M0.3413 .10 ~99.7% of scores within \pm 3 SD of M 0.1587 0 7 45 46

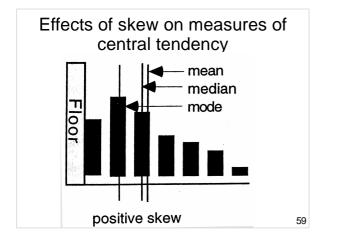






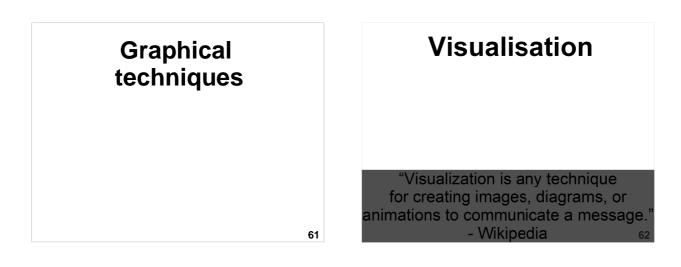


Non-normal distribution: Descriptive statistics


- Min & Max
- Range = Max-Min
- Percentiles
- Quartiles
 - -Q1
 - -Mdn = Q2
 - -Q3
 - -IQR = Q3-Q1

57

Effects of skew on measures of central tendency


- +vely skewed mode < median < mean
- Symmetrical (normal) mean = median = mode
- -vely skewed mean < median < mode

58

Transformations

- Converts data using various formulae
- To achieve normality and allow more powerful tests
- Loses original metric
- Complicates interpretation

63

Graphs (Edward Tufte)

- Visualise data
- Reveal data
 - Describe
 - Explore
 - Tabulate
 - Decorate
- Communicate complex ideas with clarity, precision, and efficiency

Graphing steps

- 1. Identify the purpose of the graph
- 2. Select which type of graph to use
- 3. Draw a graph
- 4. Modify the graph to be clear, non-distorting, and well-labelled.
- 5. Disseminate the graph (e.g., include it in a report)

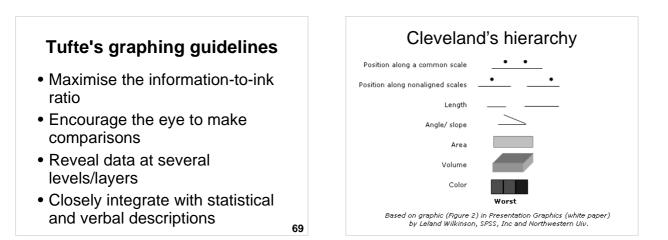
64

Software for data visualisation (graphing)

- 1. Statistical packages
- e.g., SPSS Graphs or via Anal
- 2. Spreadsheet packages
 - e.g., MS Excel
- 3. Word-processors
 - e.g., MS Word Insert Obje Micrograph Graph Chart

Principles of graphing

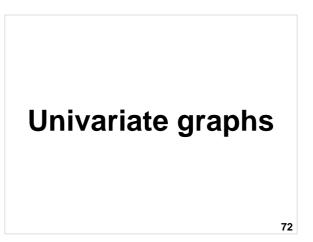
Graphical display principles


- Have a clear purpose in mind
- Maximise clarity of information conveyed; minimise clutter
- Find creative, effective ways to show the data
- Substance > fanciness
- Avoid distortions of data

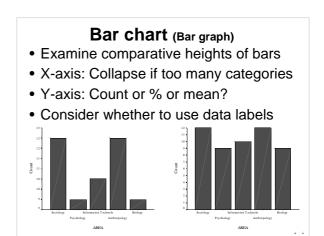
• Clear labelling

Tufte's graphing guidelines

- Show the data
- Avoid distortion
- Focus on substance rather than method
- Present many numbers in a small space
- Make large data sets coherent


68

67


Cleveland's hierarchy: Best to worst

- 1. Position along a common scale
- 2.Position along identical, non aligned scales
- 3.Length
- 4.Angle-slope
- 5.Area
- 6.Volume
- 7.Color hue color saturation density

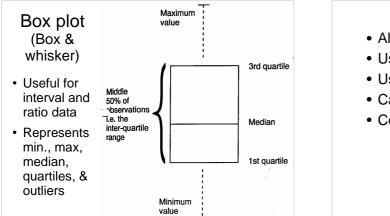
Univariate graphs

- Bar graph
- Pie chart
- Data plot
- Error bar
- Stem & leaf plot
- Box plot (Box & whisker)
- Histogram

Pie chart

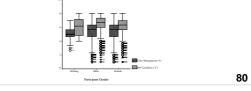
- Use a bar chart instead
- Hard to read
 - -Does not show small differences
 - Rotation / position influences perception

73

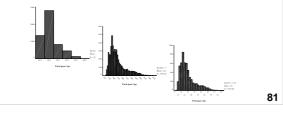


Stem & leaf plot

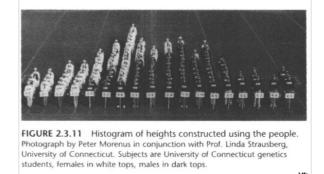
- Alternative to histogram
- Use for ordinal, interval and ratio data
- May look confusing to unfamiliar reader


Raw Data	Stem	Leaf
011223444555667777	0	0112234445556677778899
8899	1	0111222333334445555556666666666667778888899
10 11 11 11 12 12 12 13 13 13 13	2	00112233444455667889
13 14 14 14 15 15 15 15 15 15 15 16	3	005
16 16 16 16 16 16 16 16 16 17 17 17 18 18 18 18 19 19		
20 20 21 21 22 22 23 23 24 24 24		
24 25 25 26 26 27 28 28 29		
30 30 35		

Stem & leaf plot			
•••••			
 Collap 	oses t	ails	
Frequency	Stem &		
7.00	1.	&	
192.00	1.	22223333333	
541.00	1.	444444444444444555555555555555555555555	
610.00	1.	6666666666666677777777777777777777777	
849.00	1.	888888888888888888888888888888899999999	
614.00	2.	000000000000001111111111111111111	
602.00	2.	222222222222222333333333333333333333	
447.00	2.	444444444444455555555555555555555555555	
291.00	2.	6666666677777777	
240.00	2.	8888889999999	
167.00	з.	000001111	
146.00	з.	22223333	
153.00	3.	44445555	
118.00	3.	666777	
99.00	з.	888999	
106.00	4.	000111	
54.00	4.	222	
339.00 E	xtremes	(>=43)	
		78	

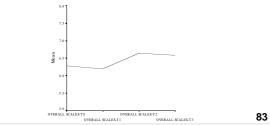

Box plot • Alternative to histogram • Useful for screening • Useful for comparing variables • Can get messy - too much info

• Confusing to unfamiliar reader

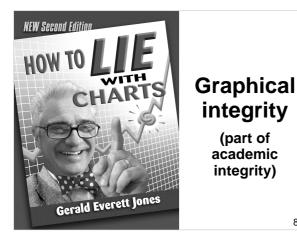


HistogramFor continuous dataX-axis needs a happy medium for

- # of categories
- Y-axis matters (can exaggerate)



Histogram of male & female heights



Line graph

- Alternative to histogram
- Implies continuity e.g., time
- Can show multiple lines

Summary: Graphs & levels of measurement		
	NOIR	
Bar chart & pie chart	NOI	
Histogram	IR	
Stem & leaf	IR	
Data plot & box plot	IR	
Error-bar	IR	
Line graph	IR	
	84	

"Like good writing, good graphical displays of data communicate ideas with clarity, precision, and efficiency.

Like poor writing, bad graphical displays distort or obscure the data, make it harder to understand or compare, or otherwise thwart the communicative effect which the graph should convey."

> Michael Friendly – Gallery of Data Visualisation

86

Tufte's graphical integrity

- Some lapses intentional, some not
- Lie Factor = size of effect in graph size of effect in data
- Misleading uses of area
- Misleading uses of perspective
- Leaving out important context
- Lack of taste and aesthetics

87

85

Review questions

- 1.If a survey question produces a 'floor effect', where will the mean, median and mode lie in relation to one another?
- 2.Would you expect the mean # of cars owned in Australia to exceed the median?

88

Review questions

- 3.Would you expect the mean score on an easy test to exceed the median performance?
- 4.Over the last century, the performance of the best baseball hitters has declined. Does this imply that the overall performance of baseball batters has decreased?

 Review exercise: Fill in the cells in this table

 Level
 Properties
 Examples
 Descriptive
 Graphs Statistics

 Nominal /Categorical
 Statistics
 Ordinal / Rank

 Ordinal / Rank
 Hereval
 Statistics
 Statistics

 Ratio
 Answers: http://wilderdom.com/research/Summary_Levels_Measurement.html
 90

Links

- Presenting Data Statistics Glossary v1.1 http://www.cas.lancs.ac.uk/glossary_v1.1/presdata.html
 A Periodic Table of Visualisation Methods -
- A Periodic Table of Visualisation Interiods http://www.visual-literacy.org/periodic_table/periodic_table.html
 Gallery of Data Visualization -
- http://www.math.yorku.ca/SCS/Gallery/
 Univariate Data Analysis The Best & Worst of Statistical
- Onivariate Data Analysis The Best & Worst of Statistical Graphs - http://www.csulb.edu/~msaintg/ppa696/696uni.htm
 Pitfalls of Data Analysis –
- http://www.vims.edu/~david/pitfalls/pitfalls.htm
 Statistics for the Life Sciences –
- http://www.math.sfu.ca/~cschwarz/Stat-301/Handouts/Handouts.

References

- 1. Cleveland, W. S. (1985). *The elements of graphing data*. Monterey, CA: Wadsworth.
- 2. Jones, G. E. (2006). *How to lie with charts*. Santa Monica, CA: LaPuerta.
- 3. Tufte, E. (1983). *The visual display of quantitative information*. Cheshire, CT: Graphics Press.

92

Open Office Impress

- This presentation was made using Open Office Impress.
- Free and open source software.
- http://www.openoffice.org/product/impress.html

93