Group Delay and Phase Delay (1A)

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Beat Signal

Very similar frequency signals

$$
\begin{aligned}
& 1.1 \mathrm{~Hz} \quad \cos (2 \pi * 1.1 * t) \\
& 0.9 \mathrm{~Hz} \\
& \cos (2 \pi * 0.9 * t) \\
& \cos (2 \pi * 1.1 * t)+\cos (2 \pi * 0.9 * t) \\
& =\cos \left(2 \pi * \frac{(1.1-0.9)}{2} * t\right) \cdot \cos \left(2 \pi * \frac{(1.1+0.9)}{2} * t\right) \\
& =\cos (2 \pi * 0.1 * t) \cdot \cos (2 \pi * 1.0 * t)
\end{aligned}
$$

Slow moving envelop

Fast moving carrier

Angle and Angular Speed

Phase Shift and Time Shift

measure phase shift not in second
But in portions of a cosine wave cycle
within phase change in one cycle

Given time shift (delay)

$$
\Phi=2 \pi f \cdot t
$$

Phase Shift \longrightarrow in radians, degrees
Delay $\quad \longrightarrow$ in seconds (time)

The actual phase shift is different
According to the frequency

Uniform Time Delay

The same delay
applied to all frequencies

Linear Phase System

The different phase shift to the different frequency

Frequency Response
: uniform magnitude \& delay

Uniform Time Delay
\rightarrow Could remove delay from the phase response to achieve a horizontal line at zero degree (No delay)

$$
2 \pi f \cdot t
$$

The waveform shape is preserved.

Group Delay

Consider the cosine components at closely spaced frequencies and their phase shifts in relation to each other

Group Delay:

The phase shift changes
for small changes in frequency

A uniform, waveform preserving phase response \rightarrow linear

Constant Group Delay

Uniform Time Delay

Group Delay

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] http://www.libinst.com/tpfd.htm

