Anti-aliasing Prefilter (6B)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Sampler

Ideal Sampling

$$
\hat{x}(t)=\sum_{n=-\infty}^{+\infty} x(n T) \delta(t-n T)
$$

CTFT

$$
\hat{X}(f)=\int_{-\infty}^{+\infty} \hat{x}(t) e^{-j 2 \pi f t} d t
$$

Practical Sampling

$\hat{x}(t) \approx \sum_{n=-\infty}^{+\infty} x(n T) p(t-n T)$
CTFT

Zero Order Hold (ZOH)

$$
x_{\text {ZOH }}(t)=\sum_{n=-\infty}^{+\infty} x[n] \cdot \operatorname{rect}\left(\frac{t-T / 2-n T}{T}\right)
$$

Time Sequence

$$
\hat{x}(t)
$$

$$
\begin{gathered}
\nabla \\
\cdots \\
x[n]
\end{gathered}
$$

Ideal
Sampling

$$
p(t)=\sum_{n=-\infty}^{+\infty} \delta(t-n T)
$$

T Sampling Period

$$
\begin{aligned}
& p(t) \\
& \underset{T}{\Delta \Delta \Delta}
\end{aligned}
$$

$$
\frac{2}{4} f_{s} \quad \frac{3}{4} f_{s}
$$

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann
[4] R. G. Lyons, Understanding Digital Signal Processing, 1997
[5] AVR121: Enhancing ADC resolution by oversampling
[6] S.J. Orfanidis, Introduction to Signal Processing www.ece.rutgers.edu/~orfanidi/intro2sp

