CLTI Correlation (2A)

Copyright (c) 2010 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Correlation

How signals move relative to each other

Positively correlated the same direction

> Average of product > product of averages

Negatively correlated the opposite direction

> Average of product < product of averages

Uncorrelated

Correlation for Power Signals

Energy Signal

$$
\begin{aligned}
R_{x y}(\tau) & =\int_{-\infty}^{+\infty} x(t) y^{*}(t+\tau) d t \\
& =\int_{-\infty}^{+\infty} x(t-\tau) y^{*}(t) d t
\end{aligned}
$$

Energy Signal real $x(t), y(t)$

$$
\begin{aligned}
R_{x y}(\tau) & =\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t \\
& =\int_{-\infty}^{+\infty} x(t-\tau) y(t) d t
\end{aligned}
$$

Power Signal

$$
\begin{aligned}
R_{x y}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) y^{*}(t+\tau) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t-\tau) y^{*}(t) d t
\end{aligned}
$$

Power Signal real $x(t), y(t)$

$$
\begin{aligned}
R_{x y}(\tau) & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) y(t+\tau) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t-\tau) y(t) d t
\end{aligned}
$$

Periodic Power Signal

$$
R_{x y}(\tau)=\frac{1}{T} \int_{T} x(t) y(t+\tau) d t
$$

Correlation for Power Signals

Positively correlated

Uncorrelated

$$
R_{x y}(\tau)=\frac{1}{2 \pi} \int_{2 \pi} \sin (t) \sin (t+\tau) d t \quad \text { Positively correlated }
$$

Negatively correlated

Correlation and Convolution

real $x(t), y(t)$
Correlation

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t=\int_{-\infty}^{+\infty} x(t-\tau) y(t) d t
$$

Convolution

$$
x(t) * y(t)=\int_{-\infty}^{+\infty} x(t-\tau) y(\tau) d \tau
$$

$$
\begin{aligned}
R_{x y}(\tau)= & x(-\tau) * y(\tau) \\
& x(-t) \quad \Longleftrightarrow \\
& R_{x y}(\tau) \quad \Longleftrightarrow
\end{aligned} \begin{aligned}
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}(f)
$$

Correlation for Periodic Power Signals

$$
R_{x y}(\tau)=\frac{1}{T} \int_{T} x(t) y(t+\tau) d t
$$

Periodic Power Signal

Circular Convolution

$$
\begin{aligned}
& R_{x y}(\tau)=\frac{1}{T}[x(-\tau) * y(\tau)] \\
& R_{x y}(\tau) \stackrel{\text { CTFS }}{ } X^{*}[k] Y[k]
\end{aligned}
$$

$$
x(t) * y(t)
$$

$$
T X[k] Y[k]
$$

$$
x[n] * y[n]
$$

CTFS

$$
N_{0} Y[k] X[k]
$$

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t
$$

$$
R_{x y}(\tau)=\frac{1}{T} \int_{T} x(t) y(t+\tau) d t
$$

Correlation for Power \& Energy Signals

One signal - a power signal Use the Energy Signal Version
The other - an energy signal

$$
R_{x y}(\tau)=\int_{-\infty}^{+\infty} x(t) y(t+\tau) d t
$$

Autocorrelation

Energy Signal

$$
R_{x x}(\tau)=\int_{-\infty}^{+\infty} x(t) x(t+\tau) d t
$$

total signal energy

$$
\begin{aligned}
& R_{x x}(0)=\int_{-\infty}^{+\infty} x^{2}(t) d t \\
& R_{x x}(0) \geq R_{x x}(\tau) \quad \text { max at zero shift } \\
& R_{x x}(-\tau)=\int_{-\infty}^{+\infty} x(t) x(t-\tau) d t \\
& R_{x x}(+\tau)=\int_{-\infty}^{+\infty} x(s+\tau) x(s) d s \\
& R_{y y}(\tau)=\int_{\substack{-\infty \\
+\infty}}^{+\infty} x\left(t-t_{0}\right) x\left(t-t_{0}+\tau\right) d t \\
& R_{x x}(\tau)=\int_{-\infty}^{+\infty} x(s) x(s+\tau) d s \\
& s=t-\tau \\
& d s=d t \\
& y(t)=x\left(t-t_{0}\right) \\
& R_{x x}(0)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{+\infty} x^{2}(t) d t \\
& R_{x x}(0) \geq R_{x x}(\tau) \\
& R_{x x}(-\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) x(t-\tau) d t \\
& R_{x x}(+\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(s+\tau) x(s) d s \\
& R_{y y}(\tau)=\lim _{T \rightarrow \infty} \int^{T} x\left(t-t_{0}\right) x\left(t-t_{0}+\tau\right) d t \\
& R_{x x}(\tau)=\lim _{T \rightarrow \infty} \int^{T} x(s) x(s+\tau) d s
\end{aligned}
$$

Autocorrelation of Sinusoids

$$
\left.\begin{array}{l}
x(t)=A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)=x_{1}(t)+x_{2}(t) \\
\begin{array}{rl}
x(t) x(t+\tau) & =\left\{A_{1} \cos \left(\omega_{1} t+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right)\right\}\left\{A_{1} \cos \left(\omega_{1}(t+\tau)+\theta_{1}\right)+A_{2} \cos \left(\omega_{2}(t+\tau)+\theta_{2}\right)\right\} \\
& =A_{1} \cos \left(\omega_{1} t+\theta_{1}\right) A_{1} \cos \left(\omega_{1}(t+\tau)+\theta_{1}\right)+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right) A_{2} \cos \left(\omega_{2}(t+\tau)+\theta_{2}\right) \\
& +A_{1} \cos \left(\omega_{1} t+\theta_{1}\right) A_{2} \cos \left(\omega_{2}(t+\tau)+\theta_{2}\right)
\end{array}+A_{2} \cos \left(\omega_{2} t+\theta_{2}\right) A_{1} \cos \left(\omega_{1}(t+\tau)+\theta_{1}\right) \\
\int_{T} A_{1} \cos \left(\omega_{1} t+\theta_{1}\right) A_{2} \cos \left(\omega_{2}(t+\tau)+\theta_{2}\right) d t=0 \\
\int_{T} A_{2} \cos \left(\omega_{2} t+\theta_{2}\right) A_{1} \cos \left(\omega_{1}(t+\tau)+\theta_{1}\right) d t=0
\end{array}\right\} \begin{aligned}
& R_{x}(\tau)=R_{x 1}(\tau)+R_{x 2}(\tau) \quad A_{k} \cos \left(2 \pi f_{k} t+\theta_{k}\right)
\end{aligned}
$$

Autocorrelation of Random Signals

$$
\begin{aligned}
& x(t)=\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} t+\theta_{k}\right) \\
& R_{x}(\tau)=\sum_{k=1}^{N} R_{k}(\tau) \\
& \quad \begin{array}{l}
\text { autocorrelation of } a_{k} \cos \left(\omega_{k} t+\theta_{k}\right) \\
\quad \text { independent of choice of } \theta_{k}
\end{array} \\
& \left.\begin{array}{l}
\text { random phase shift } \quad \theta_{k} \\
\text { the same amplitudes } \quad a \\
\text { the same frequencies } \omega
\end{array}\right\} \begin{array}{l}
x_{k}(t) \text { different look } \\
R_{k}(\tau) \text { similar look }
\end{array}
\end{aligned}
$$

the amplitudes a the frequencies ω
can be observed
in the autocorrelation $R_{k}(\tau)$
similar look but not exactly the same
describes a signal generally, but not exactly

- suitable for a random signal

Autocorrelation Examples

AWGN signal

changes rapidly with time
Current value has no correlation with past or future values
Even at very short time period
Except large peak at $\tau=0$ random fluctuation

ASK signal : sinusoid multiplied with rectangular pulse
Regardless of sin or cos, the autocorrelation is always even function
Cos wave multiplied by a rhombus pulse

a	can be observed
the frequencies ω	in the autocorrelation $R_{k}(\tau)$
similar look but no	ctly the same
describes a signa - suitable for a ra	rally, but not exactly signal

CrossCorrelation Example (1)

$$
R_{x y}(\tau)=R_{x y}(-\tau)
$$

The largest peak occurs at a shift which is exactly the amount of shift Between $x(t)$ and $y(t)$

The signal power of the sum depends strongly on whether two signals are correlated
Positively correlated vs. uncorrelated

CrossCorrelation Example (2)

$$
\begin{aligned}
& x(t)=\sin (\omega t) \\
& y(t)=\cos (\omega t)=\sin \left(\omega t+\frac{\pi}{2}\right) \\
& z(t)=x(t)+y(t)=\sin (\omega t)+\sin \left(\omega t+\frac{\pi}{2}\right)=\sin \left(\frac{2 \omega t+\pi / 2}{2}\right) \cos \left(\frac{-\pi}{4}\right) \\
& \\
& =\sin \left(\omega t+\frac{\pi}{4}\right) \cos \left(\frac{-\pi}{4}\right)=\sin \left(\omega t+\frac{\pi}{4}\right) \frac{1}{\sqrt{2}} \\
& x(t)=
\end{aligned}
$$

The signal power of the sum depends strongly on whether two signals are correlated Positively correlated vs. uncorrelated

ESD (Energy Spectral Density)

Parseval's theorem

$$
\begin{aligned}
& E_{x}=\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\int_{-\infty}^{+\infty}|X(f)|^{2} d f \\
& |X(f)|^{2}=\Psi_{x}(f) \quad \text { Energy Spectral Density }
\end{aligned}
$$

$$
\text { Real } \mathrm{x}(\mathrm{t}) \quad \text { Even, Non-negative, Real } \quad \Psi_{x}(f)
$$

$$
E_{x}=2 \int_{0}^{+\infty} \Psi_{x}(f) d f
$$

Positively correlated vs. uncorrelated

ESD and Band-pass Filtering

$$
\begin{aligned}
& E_{y}=2 \int_{0}^{+\infty} \Psi_{y}(f) d f=2 \int_{0}^{+\infty}|Y(f)|^{2} d f=2 \int_{0}^{+\infty}|H(f) X(f)|^{2} d f \\
& E_{y}=2 \int_{0}^{+\infty}|H(f)|^{2} \Psi_{x}(f) d f=2 \int_{f_{L}}^{f_{y}} \Psi_{x}(f) d f \\
& \Psi_{y}(f)=|H(f)|^{2} \Psi_{x}(f)=H(f) H^{*}(f) \Psi_{x}(f)
\end{aligned}
$$

A description of the signal energy versus frequency How the signal energy is distributed in frequency

ESD and Autocorrelation

$$
\begin{aligned}
& R_{x}(t) \quad \Psi_{x}(f) \\
& \Psi_{x}(f)=|X(f)|^{2} \\
& R_{x}(t) \Longleftrightarrow X^{*}(f) X(f) \\
& R_{x}(t)=x(-t) * x(t)=\int_{-\infty}^{+\infty} x(-\tau) x(t-\tau) d \tau \\
& R_{x}(t)=\int_{-\infty}^{+\infty} x(\tau) x(\tau+t) d \tau
\end{aligned}
$$

Power Spectral Density (PSD)

The ESD of a truncated version of $x(t)$

$$
\begin{array}{ll}
x_{T}(t) & x(t) \\
0 & |t|<\frac{T}{2} \\
\Psi_{x_{T}}(f)=\left|X_{T}(f)\right|^{2} & \quad r e c t\left(\frac{t}{T}\right) x(t) \\
X_{T}(f)=\int_{-\infty}^{+\infty} x_{T}(\tau) e^{-2 \pi f t} d t=\int_{-T / 2}^{+T / 2} x_{T}(\tau) e^{-2 \pi f t} d t
\end{array}
$$

Average Signal Power

$$
\begin{aligned}
& G_{X_{T}}(f)=\frac{\Psi_{X_{T}}}{T}=\frac{1}{T}\left|X_{T}(f)\right|^{2} \\
& G_{x}(f)=\lim _{T \rightarrow \infty} G_{X_{T}}(f)=\lim _{T \rightarrow \infty} \frac{1}{T}\left|X_{T}(f)\right|^{2}
\end{aligned}
$$

The power of a finite signal power signal in a bandwidth $f_{L} \quad f_{H}$

$$
2 \int_{f_{L}}^{f_{H}} G(f) d f
$$

PSD and Band-pass Filtering

$$
G_{y}(f)=|H(f)|^{2} G_{x}(f)=H(f) H^{*}(f) G_{x}(f)
$$

A description of the signal energy versus frequency How the signal energy is distributed in frequency

References

[1] http://en.wikipedia.org/
[2] M.J. Roberts, Signals and Systems,

