2.4.2 Proofs Involving Boxy Things

The Arithmetic-Geometric Mean Inequality

Definition: Let $\mathrm{a}, \mathrm{b} \geq 0$
The arithmetic mean of a and b is $(\mathrm{a}+\mathrm{b}) / 2$
The geometric mean of a and b is $\sqrt{ }(a b)$

When given a rectangle R with side lengths a and b :
The arithmetic mean is the side length of a square with the same perimeter as R.
The geometric mean is the side length of a square with the same area as R.

Theorem: $\sqrt{ }(a b) \leq(a+b) / 2$, and $\sqrt{ }(a b)=(a+b) / 2$ if and only if $a=b$ (square).
The geometric mean can never be larger than the arithmetic mean, but they can be equal to each other if it's a square.

Proof: The square below has side length $\mathrm{a}+\mathrm{b}$ and the area of the entire square is at least as big as the combined area of the 4 rectangles.

1. From the picture you know that $4 \mathrm{ab} \leq(\mathrm{a}+\mathrm{b})^{\wedge} 2$
2. Take the square root of both sides to get $\sqrt{ } 4 a b \leq a+b$
3. $\sqrt{ } 4 \mathrm{ab}$ can also be written as $\sqrt{ } 4 \times \sqrt{ } \mathrm{ab} \leq \mathrm{a}+\mathrm{b}$ which can be written as $2 \sqrt{ } \mathrm{ab} \leq \mathrm{a}+\mathrm{b}$
4. Divide both sides by 2 to get $\sqrt{ }(a b) \leq(a+b) / 2$.

By following the above steps we see that the picture proves the Arithmetic-Geometric Mean Inequality.

Practice Problem (\#19 on page 74): Explain how the following picture "proves" that the sum of a number x and its inverse $1 / \mathrm{x}$ is at least 2 .

Each of the four rectangles has an area of 1.

1. From the picture you know that $4(x \cdot 1 / x) \leq(x+1 / x)^{\wedge} 2$
2. The simplified version of this is $4 \leq(x+1 / x)^{\wedge} 2$
3. Take the square root of both sides to get $2 \leq x+1 / x$

By following the steps above we see that the picture proves that the sum of a positive number x and its inverse $1 / \mathrm{x}$ is at least 2 .

