Group Velocity and Phase Velocity (1A)

Copyright (c) 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Wave Equation

$$
A(t, t)=A_{0} \cos (k x-\omega t)
$$

$A_{0} \cos \left(k x-\omega t_{0}\right)$
At the snapshot of the time t_{0}

$$
A_{0} \cos \left(k x_{0}-\omega t\right)
$$

At the fixed site of the distance x_{0}

Wavelength, Frequency

$A_{0} \cos \left(k x-\omega \frac{1}{t_{0}}\right)$
At the snapshot of the time t_{0}

wavelength $\quad \lambda=\frac{2 \pi}{k}$
frequency

$$
f=\frac{\omega}{2 \pi}
$$

period

$$
T=\frac{2 \pi}{\omega}
$$

wave number $k=\frac{2 \pi}{\lambda}$
$\omega=2 \pi f$
angular frequency

$$
\omega=\frac{2 \pi}{T}
$$

Wave Number, Angular Frequency

At the snapshot of the time t_{0}

wave number $k=\frac{2 \pi}{\lambda}$
radians per unit distance

At the fixed site of the distance x_{0}

angular frequency $\quad \omega=\frac{2 \pi}{T}$
radians per unit time

Phase Velocity (1)

$A_{0} \cos (k x-\omega \stackrel{\downarrow}{\boldsymbol{t}}) \quad A_{0} \cos \left(k \boldsymbol{x}_{0}-\omega t\right)$

At the snapshot of the time t_{0}

wave number $k=\frac{2 \pi}{\lambda}$ radians per unit distance

At the fixed site of the distance x_{0}

angular frequency $\quad \omega=\frac{2 \pi}{T}$
radians per unit time

Phase Velocity

$$
v_{p}=\frac{\lambda}{T}=\frac{2 \pi / k}{2 \pi / \omega}=\frac{\omega}{k}
$$

$$
v_{p}=\frac{\omega}{k}
$$

Phase Velocity (2)

Phase Velocity $\quad v_{p}=\frac{\omega}{k}$
$A \cos (k x-\omega t)$
Given time \boldsymbol{t},
Corresponding distance \boldsymbol{x}, \square the same oscillations

$$
\begin{aligned}
& k x=\omega t \\
& v_{p}=\frac{x}{t}=\frac{\omega}{k}
\end{aligned}
$$

Phase Velocity, Group Velocity

Phase Velocity $\quad v_{p}=\frac{\omega}{k}$

Group Velocity $\quad v_{g}=\frac{\partial \omega}{\partial k}$

Group Delay

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] http://www.mathpages.com/, Phase, Group, and Signal Velocity

