
Realization of an Adaptive Memetic Algorithm Using
Differential Evolution and Q-learning: A Case Study

in Multi-Robot Path-Planning

Pratyusha Rakshit1, Amit Konar1, Pavel Bhowmik1, Indrani Goswami1, Swagatam Das1, Lakhmi C. Jain2, Atulya K.
Nagar3

1ETCE Department, Jadavpur University, Kolkata-32, India
2Dept. of Electrical and Electronics Engineering, Univ. of South Australia, Adelaide

3Dept. of Math and Computer Science, Liverpool Hope University
Contact Author: Amit Konar (konaramit@yahoo.co.in)

Abstract— Memetic algorithms are population-based meta-
heuristic search algorithms that combine the composite benefits of
natural and cultural evolution. An adaptive memetic algorithm
incorporates an adaptive selection of memes (units of cultural
transmission) from a meme-pool to improve the cultural
characteristics of the individual member of a population-based
search algorithm. This paper provides a novel approach to design
an adaptive memetic algorithm by utilizing the composite benefits of
Differential Evolution for global search and Q-learning for local
refinement. Four variants of Differential Evolution including the
currently best Self-Adaptive Differential Evolution algorithm have
been used here to study the relative performance of the proposed
adaptive memetic algorithm with respect to runtime, cost function
evaluation and accuracy (offset in cost function from the
theoretical optimum after termination of the algorithm). Computer
simulations undertaken on a well-known set of 25 benchmark
functions reveals that incorporation of Q-learning in one popular
and one outstanding variants of Differential Evolution makes the
corresponding algorithm more efficient in both runtime and
accuracy. The performance of the proposed adaptive memetic
algorithm has been studied on a real-time multi-robot path-
planning problem. Experimental results obtained for both
simulation and real frameworks indicate that the proposed
algorithm based path-planning scheme outperforms real coded
Genetic Algorithm, Particle Swarm Optimization and Differential
Evolution, particularly its currently best version with respect two
standard metrics defined in the literature.

Index terms- Adaptive memetic algorithm; Q-learning;
Differential evolution; Multi-robot path-planning.

I. INTRODUCTION
Coined by Dawkins in 1976, the word “meme” refers to the
basic unit of cultural transmission or imitation [1]. Memetic
Algorithms (MAs) are population-based meta-heuristic search
algorithms that combine the composite benefits of natural and
cultural evolution. Natural evolution realized by Evolutionary
Algorithm (EA) works on the Darwinian principle of the
struggle for existence, and aims at determining the global
optima in a given search landscape. Traditional EA usually
takes an excessively large time to locate a precise enough
solution because of its inability to exploit local information.
Cultural evolution, on the other hand, is capable of local

refinement. MA captures the power of global search by its
evolutionary component and local search by its cultural
component.

The early research on MA was confined in manual crafting
of dedicated memes for a given problem [2]. A paradigm shift
in research to adaptively select a meme from a pool of memes
for application to an individual member of the population has
been observed during the new millennium. The class of
algorithms incorporating the adaptive selection of memes is
referred to as Adaptive MA (AMA). AMAs “promote both
cooperation and competition among various problem-specific
memes and favors neighborhood structures containing high
quality solutions” [3] to be attained at low computational costs.
Usually, the selection of the meme for an individual member of
the population is done based on its ability to perform local
improvement.

Several variants of AMAs are found in the literature [3],
[4], [5]. The one we would use in this paper is Roulette-Choice
strategy based Hyperheuristic AMA [4]. In the Roulette-choice
strategy, a meme Me is selected with probability relative to the
overall improvement. Given that g(.) is a choice function, then

the probability of selection of Me is

n

i
ie MgMg

1
)(/)(where n

is the total number of memes considered.

The AMA to be proposed requires an evolutionary
optimization algorithm for global search and a reinforcement
learning algorithm for local refinement. The evolutionary
component has been realized here by Differential Evolution
(DE) algorithm for its proven merits in global optimization
[20], [26], [10]. Some of the attractive features of DE,
justifying its selection in the design of AMA, include simplicity
of its structure leading to ease of coding, very few control
parameters and faster convergence with respect to other
swarm/evolutionary algorithms. Temporal Difference Q-
learning (TDQL) on the other hand, has been selected as the
reinforcement module in AMA for its wide popularity in real-
time learning.

The particular variant of DE (DE/current-to-best/1) used in
the proposed AMA has two parameters called scaling factors,
which are adaptively selected from a meme pool. It is

important to mention here that the scaling factors for all
member of the population in a DE algorithm should not be
equal for the best performance. A member with a good fitness
should search in the local neighborhood, whereas a poor
performing member should participate in the global search. A
good member thus should have small scaling factors, while
worse members should have relatively large scaling factors
[10]. This is realized in the paper with the help of TDQL.

The TDQL works on the principle of reward and penalty. It
employs a Q-table [6] to store the reward/penalty given to an
individual member of the population. Members are assigned
suitable values of their scaling factors from a given meme pool
before participation in the evolutionary process. After
completion of the evolutionary process, members are rewarded
based on their fitness, and the reward/penalty given to the
member depending on the improvement/deterioration in fitness
measures of the trial solution is stored in the Q-table. The
process of evolution and Q-table updating thus synergistically
helps each other, resulting in an overall improvement in the
performance of the AMA.

The AMA algorithm to be proposed takes care of three
major issues. First, it employs a Roulette-Choice function
based hyper-heuristic scheme to adaptively select memes
(scaling factors) for the individual members before
participation in the DE. Second, it evaluates the total
reward/penalty to be given to the evolved members based on
their immediate reward measured by improvements in fitness
because of selection of suitable scaling factors prior to
evolution, and the future reward to be obtained from the Q-
table. This is done by one step of the Q-learning. Third, it
stores the total reward/penalty in the Q-table by identifying the
right location based on its row and column address. The row
address of the Q-table is determined from the rank of the
evolved members, computed from their individual fitness. The
column address is determined from the selected scaling factors
with which the individual participated in evolutionary step in
the last iteration.

Performance analysis of the proposed AMA realized with
DE and TDQL (hereafter referred to as DE-TDQL) is studied
using a set of 25 benchmark functions and compared with
classical DE/rand/1, DE/current-to-best/1, and DE/rand/either-
or algorithms. Experiments reveal that the proposed realization
outperforms other variants of DE both by computational
accuracy and run time. Experiments have also been undertaken
to compare the performance of a classical Self-adaptive
Differential Evolution (SaDE) [28] algorithm with its extended
version realized with the proposed adaptation mechanism of
the scaling factors. The results confirm that the extended SaDE,
referred to as SaDE-TDQL, outperforms the classical SaDE
with respect to most (21 out of 25) of the benchmark functions
used in the study.

A case study is undertaken here to compare the relative
performance of the proposed AMA with some of the popular
competitive algorithms. The case study in the present context
refers to online trajectory planning of mobile robots from given
starting positions to fixed goal positions without hitting
teammates and obstacles [25], [49]. There exist two alternative
approaches, centralized and distributed, to handle the problem.

In a centralized approach, the next position of all the robots are
determined from their current positions, by minimizing an
objective function concerning total path of traversal by the
robots, satisfying the necessary constraints on collision
avoidance of individual robots with teammates and obstacles.
The above problem is solved by iteratively identifying next
positions of the robots until the goal position for all the robots
are reached.

In the distributed approach, the objective function with all
the necessary constraints for the centralized problem is divided
into n objective functions for n robots, where the i-th objective
function refers to the distance objective and collision avoidance
constraints for the i-th robot. The minimization problem in the
centralized approach usually has a high degree of
computational overhead, which in distributed environment
boils down to relatively simplified problem of minimization of
n objective functions for n robots. The dynamic changes in the
current and the next positions for each robot are taken care of
by an iterative manner as in case of centralized approach.

There exists extensive literature on path-planning by single
robotic agent employing graphs [50], [51], [52], neural nets
[53], [54], fuzzy logic [55], [56] and evolutionary algorithms
[57], [45], [58]. Recently researchers are taking keen interest to
consider multi-robot path-planning problems for their possible
future applications in factory environment (for transportation of
raw materials and (partially) finished products from selected
source stations to fixed destinations), defense and security
systems and patient-carrying systems in hospitals/airports.
Relatively fewer research works have been undertaken so far in
multi-robot path-planning in comparison to its single robot
counterpart. The existing literature on multi-robot path-
planning employs graphs [64], Voronoi diagrams [65], and
potential field techniques [66] to handle the problem. Only in
the last few years, traces of evolutionary algorithms in multi-
robot environment [24], [60], [68], [69] could be detected. The
evolutionary multi-robot path-planners found in the literature
usually consider point-mass robots [59], [60] and thus are not
amenable for real world applications. Although shape and size
of robots are considered in a few evolutionary path-planning
systems, full merits of the works cannot be judged as they were
tested in simulation environments [68], [70], [71] only.

This paper considers an evolutionary path-planning with
robots of definite size and circular cross-section and tested both
in simulation and real environments. The workspace here is
partitioned into square grids of equal size. The starting and the
goal positions of each robot on the grid map are given, and the
proposed AMA is used to locally plan the trajectory of motion
of the robots with an aim to minimize the total path traversed
by the robots without collision with obstacles. Performance
metrics used in the existing literature [24] have been used here
to compare the relative merits of the proposed AMA with
respect to Genetic Algorithm (GA) based realization given in
[49]. Experiments undertaken further to compare the relative
performance of the AMA based path-planner with other
swarm/evolutionary algorithm based design reveal that the
proposed AMA based planner outperforms other realizations
designed with Particle Swarm Optimization (PSO), DE/current-
to-best/1 and SaDE.

The paper is divided into eight sections. Section II provides
an overview of the classical Q-learning. Section III introduces
the Differential Evolution algorithm. In section IV, we propose
the AMA realized with DE and TDQL. Section V reports the
results of performance analysis of the reported AMA. Section
VI provides the formulation of the multi-robot motion planning
problem and experiment with Khepera II mobile robots and
computer simulation. Conclusions are given in section VII.

II. AN OVERVIEW OF THE CLASSICAL Q-LEARNING
Learning helps an agent performing better in similar situations.
Q-learning falls under the class of reinforcement learning
algorithms. In reinforcement learning, the learner performs an
action causing a state-transition in the environment it resides
and receives a reward (or penalty) for the action in attempting
to reach a definite goal. The task of the agent here is to learn a
control policy to select an action (from a set of possible
actions) at a given state s in order to maximize the expected
sum of the rewards for a sequence of state-transitions
originating at s and leading to the goal. In the evaluation of the
expected sum of rewards, the future rewards are discounted
exponentially by their delay [61], and the discounted rewards
are added to the ‘immediate reward’ obtained for the current
state transition from s to s/. Predicting the future rewards at
state s/, when the agent is at state s is not easy. In Q-learning,
we formulate the expected future reward by considering only
the discounted next reward for the best action selection at s/.
However, because of a recursive definition of Q (total-reward)
in Q-learning, the above formulation of expected future reward
iteratively approximates the actual reward [7], obtained by
summing up all the discounted future rewards with the
immediate reward.

Let

},...,,{ 21 nsssS be a set of states of an agent in a given
environment,

},...,,{ 21 naaaA be a set of actions that the agent can
select in each state Ssi ,

),(ji asr be the immediate reward that the agent acquires by
execution of an action ja at state is ,

),(ji as be the transition function that returns the next

state sk due to selection of action ja at state is , i.e.,
),(jik ass ,

γ be the discounting factor used to penalize the future
reward after a delay of k units by scaling it by a factor γk
for positive integer k. Usually, γ lies in [0,1), and

),(ji asQ be the total reward that the agent receives by
executing action aj at state si.

In Q-learning, the agent selects its next state from its current
state by using a policy. The policy attempts to maximize the
cumulative reward that the agent could attain in subsequent

state-transitions from its next state. Let)(
*

sV be the total
cumulative reward that the agent earns at state s. this

cumulative reward at state s is the sum of the discounted
immediate rewards obtained by selection of best action at each

state-transition, starting at state s. In Q-learning,)(
*

sV is
approximated as . asQ Max

a
),(

 Thus),(asQ evaluation

becomes simplified by (1).

)),((),(),(
*

asQVasrasQ (by definition)

)),,((),(aasQMaxasr
a

 (1)

The classical Q-learning for deterministic state-transition is
given below. Here, the algorithm begins with a randomly
selected initial state. An action Aa is randomly selected, and
the agent because of this action receives an immediate reward
r, and moves to the new state using δ-transition rule, provided
in a table. The Q-value of the previous state s due to selected
action a is updated in a two-dimensional Q-table using (1).
Now, the next state),(ass is considered as the initial
state, and the steps of action selection, receiving immediate
reward, transition to next state and Q-table updating are
repeated forever.

Pseudo-Code of Deterministic Q-Learning
For each state s and action a

Initialize),(asQ ←0;
Observe the current state s;

End For;
Repeat

Select },...,,{ 21 naaaAa randomly and execute it;
Receive an immediate reward),(asr ;

Observe the new state),(ass ;
Update the table entry),(asQ by

)),,((),(),(aasQMaxasrasQ
a

 ;

s←s/;
For Ever.

Differential Q-learning is a modified version of Q learning.
The Q-table update policy in Differential Q-learning is
different from classical Q-learning. It has the ability to
remember the effect of past Q value of a particular state-action
pair while updating the corresponding Q value. The modified Q
update equation is given by

))),,((),((),()1(),(aasQMaxasrasQasQ
a

 (2)

The formula has the effect, that the Q-value),(asQ is
incremented, when the action a led to a state),(as in which
there exists an action /a , such that the best possible Q-value

)),,((aasQ in the next time step plus the achieved reward
),(asr is greater than the current value of).,(asQ This is

exactly the desired behavior, because in such a situation, the
old estimate of),(asQ was too pessimistic. The learning rate
 determines to the extent the newly acquired information will
override the old information. A setting of = 0 makes the agent

stop learning, while =1 would make the agent consider only
the most recent information. The discount factor determines
the importance of future rewards. A factor of 0 will make the
agent "opportunist" by only considering current rewards, while
a factor approaching 1 will make it strive for a long-term high
reward. If the discount factor is greater than or equal to 1,
the Q values may diverge.

III. AN OVERVIEW OF DIFFERENTIAL EVOLUTION
ALGORITHM

DE is a population based meta-heuristic algorithm, which has
earned wide publicity for its simple structure with few lines of
codes, fewer parameters and its excellent performance in
numerical optimization with respect to speed and accuracy
[11], [73]. DE involves a population of NP parameter vectors,
which at generation G is denoted

by)}(),...,(),({ 21 GXGXGXP NPG

 .

1. Initialization: The i-th member)(GX i

 for i=1 to NP at

generation G=0 is selected by uniformly randomizing

individuals in the range],[maxmin XX

where

 x xxX D

 min2min1minmin ,...,, and x xxX D

 max2max1maxmax ,...,, ,

and thus the j-th component of the i-th member at G=0 is given
by

)()1,0()0(minmax,min, jjjijji xxrandxx (3)

where)1,0(, jirand is a uniformly distributed random number
lying between 0 and 1. Initialize crossover rate Cr randomly in
[0, 1].

2. Mutation: A donor vector)(GV i

corresponding to each

population member or target vector)(GX i

 is created by

randomly selecting two other members)(1 GX rand

and

)(2 GX rand

from the current population PG , where

))()(())()(()()(2121 GXGXFGXGXFGXGV rrandrandibestii

 (4)

and F/
1 and F/

2 are two scaling factors in [0, 2]. The mutation
operation given in (4) is referred to as DE/current-to-best/1.
This is done for i=1 to NP. There are other mutation operations,
details of which are available in [10], [43].

3. Crossover: There are two types of crossover
(recombination) schemes- binomial and exponential [10, [11].
We outline both binomial and exponential crossover here,
which we would use in AMA algorithm of section-IV.

In case of binomial crossover, generate a trial vector

)(GU i

for each pair of donor vector)(GV i

and target vector

)(GX i

by the following operation

otherwise Gx

jj or Crrand if Gv
Gu

ji

randijji
ji)(

)(
)(

,

,
, (5)

where)1,0(, jirand [0, 1] is a uniformly distributed random
number lying in [0,1] and is instantiated independently for each
j-th component of the i-th vector.],1[Djrand is a randomly

chosen index, which ensures that)(GU i

gets at least one

component from)(GV i

.

In case of exponential crossover, we randomly select an
integer n from [1, D] and use it as a starting point in the target
vector to represent the beginning of the crossover or exchange
of components with the donor vector. We also select another
integer L from [1, D], where L denotes the number of
components, the donor vector contributes to the target. After a

choice of n and L, we obtain the trial vector)(GU i

with

)(
)(

)(
,

,
, Gx

Gv
Gu

ji

ji
ji

]1[

1,...,1,

D,j other all for

Lnnnj for DDD

 (6)

where the angular brackets D denote a modulo function with
modulus D. The integer L is selected from [1, D] by the
following pseudo-code:
L = 0;
DO
{
 L = L + 1;
} WHILE (((rand (0, 1) < Cr) AND (L<D)).

4. Selection: For a given objective
()f x to be minimized, the

selection operator is described as

))(())()(

))(())()()1(

GXfGUf(if GX

GXfGUf(if GUGX

iii

iiii

 (7)

The steps 2 to 4 are repeated until a stopping criterion is
reached.

IV. PROPOSED ADAPTIVE MEMETIC ALGORITHM
The AMA to be proposed shortly includes a DE for global
exploration and a TDQL for adaptive selection of memes.
These two modules work in a synergistic manner to improve
the quality of solutions for a given optimization problem. After
each evolutionary step, the performance of the members is
evaluated based on their fitness. High performing members are
rewarded with positive immediate reward, whereas low
performing members are penalized. The reward/penalty given
to a member is stored in the Q-table using the TDQL learning
rule. A meme pool of a parameter F is maintained to select two
parameters (scaling Factors) F1' and F2' for the individual
members of the DE. This is performed by a hyperheuristic
choice-metric based adaptive selection from the meme pool.
The process of adaptive selection of F1' and F2' from the meme

pool, followed by one step of DE and reward/penalty updating
in the Q-table is continued until the condition for convergence
of the AMA is satisfied. In this paper, F1' and F2' are set equal
to F to save complexity to avoid maintenance of two Q-tables
for each individual scaling factors.

The proposed AMA algorithm accesses the Q-table to
select the scaling factors of the individual members before
evolution, and updates the Q-table after one evolution. The row
indices of the Q-table represent states S1, S2, …, SNP of the
population obtained from the last iteration of the DE algorithm.
A fitness function based rank evaluation of individual members
is used to allocate the member to a specific state. Thus state Sk
includes a member of rank k. The column indices of the Q-
table correspond to uniformly quantized values of the scaling
factors to be used in the evolutionary algorithm. Let the
parameter under consideration be F with possible quantized
values F1, F2, …, F10. Then Q(Si, 10Fj) represents the total
reward given to a member at state Si for selecting F=Fj. The
Roulette-Choice strategy is used to select a particular value of
F from the meme pool {F1, F2, …, F10} using the Q(Si, 10Fj),
j=1, 2, …, 10 for the individual member located at state Si. It
must be noted that the factor 10 is used to get integer index of
Q(.,.).

The adaptation of Q(Si, 10Fj) is done through a
reward/penalty mechanism as used in classical TDQL. If a
member of the population, residing at state Si on selecting F=Fj
moves to a new state Sk by the evolutionary algorithm, and
such state transition causes an improvement in fitness measure,
then Q(Si, 10Fj) is given a positive reward following the TDQL
algorithm. If the state transition results in no improvement in
fitness measure, then a penalty is given to the selected Q(Si,
10Fj). The penalty is introduced by a decrease in Q-value.
Principles used in designing the AMA are introduced below.

1. Initialization: DE-TDQL starts with a population of NP D-
dimensional parameter vectors representing the candidate
solutions within the prescribed minimum and maximum
bounds:

min 1 min 2 min min

max 1 max 2 max max

[, ,.........,]

[, ,.........,]
D

D

X x x x

X x x x

Hence, we may initialize the j-th component of the i-th

vector at generation G=0 as

)()1,0()0(minmax,min, jjjijji xxrandxx (8)

where),(rand j,i 10 is a uniformly distributed random number
lying between 0 and 1. The entries for the Q-table are
initialized as small values. If the maximum Q-value attainable
is 100, then we initialize the Q-values of all cells in the Q-table
as 1.

2. Adaptive Selection of Parameters of the DE: The
reward/penalty based adaptation of the Q-table helps in the
right selection of meme F for the members of the population.
For example, a member at state Si has a high probability of
selecting F=Fj if Q(Si, 10Fj) is the largest among Q(Si, 10Fl) for
l=1, 2, …, 10. It is apparent that if Q(Si, 10Fj)> Q(Si, 10Fl), for
all l, then selection of F=Fj at state Si by the member was

rewarded many times before in the evolution process.
Naturally, the learning experience will guide member to select
F=Fj with a high probability when the member is at state Si.
The probability of selection of F=Fj from the meme pool {F1,
F2, …, F10} is given by

10

1
ii),(S/),(S)(

l
ljj F 10 QF 10 Q FP (9)

To maintain adaptation and learning in all Q’s in each row,
we select a particular F from the meme pool by a random
selection. This random selection is realized by generating a
random number r between (0, 1) and then we determine Fj,
such that the cumulative probability of F= F1 through Fj-1 is less
than a randomly generated number r, and the cumulative
probability for F= F1 through F=Fj is greater than r.
Symbolically, we need to hold:

j

m
m

j

m
m FFPrFFP

1

1

1
)()((10)

10

1

1
10

1

1

1

)10,(

)10,(

)10,(

)10,(

l
li

j

m
mi

l
li

j

m
mi

FSQ

FSQ
r

FSQ

FSQ
 (11)

3. Differential Evolution: The DE/current-to-best/1 algorithm
used here employs mutation, recombination and selection as
introduced in Section III. The basic difference of the current
realization is the selection of F1

/ and F2
/ from the meme pool

adaptively by step 2 before invoking the DE process.

4. Ranking of the members and state assignment: Let fi be
the fitness of the i-th member in the last iteration. A ranking
policy is designed to compute normalized fitness

iff
NP

j
ji

,/

1
, and then sort them in descending order. The r-th

element of the sorted list has rank r, and this member is
allocated to state Sr. This is repeated for all r=1 to NP.

5. Reward/Penalty based Q-table updating: Let a member at
state Si on selection of Fj moves to a new state Sk. If the fitness
of the member increases due to transition from Si to Sk, then
Q(Si, Fj) will be updated following (12) with a positive reward
function: reward(Si, 10Fj) = increase in fitness of the member,
where

))10,(max)10,((

)10,()1()10,(
/

/
FSQFSreward

FSQFSQ

k
F

ji

jiji

 (12)

else Q(Si, 10Fj) will be evaluated by (12) with a negative
reward= -K, of constant value, however, small.

6. Convergence: After each evolution, we repeat from step 2
until one of the following conditions for convergence is
satisfied. The conditions include restricting the number of
iterations, maintaining error limits, or the both, whichever
occurs earlier.

and

Pseudo Code of AMA
I. Set the generation number 0t and randomly initialize a

population of NP individuals

)(),...,(),(21 tXtXtXP NPt with

)(),...,(),()(,2,1, txtxtxtX Diiii

 for NPi ,...,2,1 and each
individual uniformly distributed in the

range],[maxmin XX

,where

 xxxX D

 min2min1minmin ,...,, and

 xxxX D

 max2max1maxmax ,...,, .Set α=0.25, γ=0.8.

Evaluate))((tXf i

, for target vector)(tX i

, NPi ,...,2,1 .

Rank each vector according ascending order of cost function f(.).
Let the ranked population be)0(),...,0(),0(0 21 rrrR NP ,
where)0(ri denotes a target vector of rank i in t-th generation.
Initialize ,1)]),0(([jrQ i , 10,...,2,1j .where)0(ri is
defined as above for NPri ,1 and 10,1j denotes the index
of uniformly quantized scaling factor F, and t denotes t-th
iteration.

II. While stopping criterion is not reached, do
Begin
Initialize ,0)]),(([jtrreward i NPri ,...,2,1 ,

 10,...,2,1j .
For i=1 to NP do
Begin
II.a. Roulette- Choice selection:

Randomly select a scaling factor F ir from 0.1 to 1.0 with
an interval of 0.1 such that the probability of selection of a

particular jFF is

10

1
)),(()),(()(

l
ii ltrQjtrQjP .

II.b. Mutation:

Generate a donor vector)(),...,(),()(,2,1, tvtvtvtV Diiii

corresponding to the i-th target vector)t(iX

 via the
following mutation scheme

));()(())()(()()(21 tXtXFtXtXFtXtV randrandibestii

where rand1 and rand2 are mutually exclusive integers
randomly chosen from the range [1,NP], and all are different

from the base index i, and)(tX best

is the best individual
vector with the best fitness (i.e., lowest cost function value)
in the population at generation t.

II.c. Crossover:

Generate trial vector)(),...,(),()(,2,1, tutututU Diiii

for the i-th target vector)(tX i

 through binomial or

exponential crossover like classical DE as in section III.
II.d. Selection:

Evaluate the trial vector)(tU i

 by measuring its cost function

)).((tUf i

If))((tUf i

<))((tXf i

Then do
Begin

);()1(

));(())(()10),((

tUtX

tUftXfFtrreward

ii

iiri i

If))((tUf i

<))((tXf best

Then do
Begin

);()(tUtX ibest

Evaluate))((tXf best

 and save it for future.

End;
End If;

End;
Else do
Begin

);()1(

;)10),((

tXtX

KFtrreward

ii

ri i

End;
End If;

Evaluate))1((

tXf i and save it for future.
End For;
II.e. Rank each vector according ascending order of cost function

f(.). Let the ranked population
be)1(),...,1(),1(1 21 trtrtrtR NP , where

)1(tri denotes a target vector of rank i in (t+1)-th
generation.

II.f. Update Q-table:

For i=1 to NP do
Begin

For Fj=0.1 to 1.0 do
Begin

If 0)10),((ji Ftrreward Then

)];10),1((max)10),(([

)10),(()1()10),((

FtrQFtrreward
FtrQFtrQ

i
F

ji

jiji

Else ;)10),(()10),((jiji FtrQFtrQ
End If;

End For;
End For;
Increase the counter value .tt 1
End While;

V. SIMULATION RESULTS
In this section, we compare DE-TDQL with other four variants
of DE, including DE/rand/1, DE/rand/either-or, DE/current-to-
best/1 [10], [11] and SaDE [28]. The comparative study
focuses on three important aspects of all the competitor

algorithms [43]: (1) The quality of the final solution produced
by each algorithm, irrespective of the computational time it
consumes; (2) The speed of the convergence measured in terms
of the number of function evaluations (FEs) required by an
algorithm to reach a predefined threshold value of the objective
function; and (3) The frequency of hitting the optima (or
success rate) measured in terms of the number of runs of an
algorithm that converge to a threshold value within a
predetermined number of FEs.

A. Benchmark Functions
The most challenging issue in validation of an evolutionary

algorithm is to identify the right benchmark functions with
diverse characteristics of the functions, such as uni-modality,
multimodality and particularly location of the optima on the
surface. Traditional benchmark functions usually have the
global optimum at the centre, surrounded by several local
optima along the axes. Naturally, these benchmark functions
are inadequate to exhaustively test the performance of an
optimization algorithm. In order to overcome the above
problem, a set of recommended benchmark functions [48] was
proposed in the Congress of Evolutionary Computation
(CEC’2005) conference. The proposed benchmarks include
shifting of the global optimum and rotation of the local optima,
thereby incorporating the diversity of the optimization
problems in the traditional benchmark functions.

Here, we test the relative performance of our algorithm
with other variants of DE using 25 benchmark functions,
recommended in [48], of 10, 30 and 50 dimensions. The list of
the functions is available in [48] and cannot be given here for
lack of space. The experiments are conducted for 25
independent runs. A performance analysis of the variants of
DE for different settings of crossover rate for different
dimensional problems has been undertaken here with
simulation results. Maximum number of fitness evaluation
(Max_FEs) is set at 100,000 for 10-D, 300,000 for 30-D and
500,000 for 50-D. For lack of space, the experimental results
for 50-D problem only with Cr=0.9 are provided in Table-I.

B. Initial Population and Method of Initialization
For all the contestant algorithms we used the same

population size, which is 10 times the dimension D of the
problem. To make the comparison fair, the populations for all
the DE variants (over all problems tested) were initialized
using the same random seeds. Fogel and Beyer [27] have
shown that the popularly used symmetric initializations to
compare evolutionary computations, can give false impressions
of relative performance. In many comparative experiments, the
initial population is considered to have a uniform distribution
about the entire search space, which is usually defined to be
symmetric about the origin [43]. In this paper, we have
adopted an asymmetric initialization procedure following the
works reported in [74].

C. Comparison of Quality of the Final Solution
To judge the accuracy of different DE variants, we first let

each of them run for a very long time over every benchmark
function, until the number of FEs exceeds a given upper limit
(which was fixed depending on the dimension of the problem).

The mean and the standard deviation (within parentheses) of
the best-of-run values for 25 independent runs of each of the
algorithms are presented in Table-I for D=50 and Cr=0.9.

Since all the algorithms start with the same initial
population over each problem instance, we used paired t-tests
to compare the means of the results produced by best and the
second best algorithms (with respect to their final accuracies).
The t-tests are quite popular among researchers in evolutionary
computing and they are fairly robust to violations of a Gaussian
distribution with large number of samples, say 25. In the last
columns of Table-I, we report the statistical significance level
of the difference of the means of best two algorithms. Note that
here ‘+’ indicates that the t value of 49 degrees of freedom is
significant at a 0.05 level of significance by two-tailed test,
while ‘-’ means the difference of means is not statistically
significant and ‘NA’ stands for Not Applicable, covering cases
for which two or more algorithms achieve the best accuracy
results. For all the t-tests carried in Table-I, the sample size is
taken to be 25. The best algorithm is marked in bold.

D. Performance Analysis
In order to compare the speeds of different algorithms, we

select a threshold value of the objective function for each
benchmark problem. We run each algorithm on a function and
stop as soon as the best fitness value determined by the
algorithm falls below the predefined threshold. Then we note
the number of FEs the algorithm takes. A lower number of FEs
corresponds to a faster algorithm. Table-II reports the number
of runs (out of 25) that managed to find the optimum solution
(within the given tolerance) as well as the success performance
obtained by the algorithms to converge within the prescribed
threshold value.

A close inspection of Table-I indicates that the performance
of the proposed DE-TDQL algorithm has remained clearly and
consistently superior to that of the three classical DE schemes
(DE/rand/1, DE/rand/either-or, and DE/current-to-best-1). It is
interesting to see that out of 25 benchmark instances, in 21
cases DE-TDQL outperforms its nearest neighbor competitor in
a statistically significant fashion. One may note from Table I,
that for a few relative simpler test functions like Shifted Sphere
(f01), Shifted Schwefel’s Problem 1.2 (f02), and Shifted
Schwefel’s Problem 1.2 with noise in fitness (f04) most of the
algorithms end up with almost equal accuracy. Substantial
performance differences however, are noticed for the rest of the
more challenging benchmark functions. In three cases, (f15,
f18, and f25) DE/current-to-best-1 achieved best average
accuracy beating DE-TDQL, which remained the second best
algorithm.

Table-II indicates that not only does DE-TDQL yield the
most accurate results for nearly all the benchmark problems,
but the number of runs that converge below a pre-specified cut-
off value is also greater for DE-TDQL over most of the
benchmark problems covered here. This indicates the higher
robustness (i.e., the ability to produce similar results over
repeated runs on a single problem) of the algorithm as
compared to its other three competitors.

The latter part of the experiment attempts to improve the
performance of the most popular variant of DE, called Self-

adaptive Differential Evolution (SaDE) [28] by incorporating
TDQL in the algorithm for adaptation of scaling factors. SaDE
focuses on adaptation for crossover rate and mutation strategies
of DE. The motivation in SaDE is to solve the dilemma that
crossover rate Cr and mutation strategies involved in DE are
often highly problem dependant. SaDE adopts four DE
mutation strategies and introduces a probability ‘p’ to
determine the right one to use. The probability p is gradually
adapted according to its learning experience. Additionally,
crossover rate Cr is self-adapted by recording Cr values that
make trial vectors [10] successfully enter the next generation.

Table-III provides a comparative estimate of the relative
performance of SaDE extended with TDQL (SaDE-TDQL) for
scaling factor adaptation. In Table-III, the mean and the
standard deviation (given within parenthesis) of the cost
function of 25 independent runs for each algorithm are
presented. To test the statistical significance of the results, we
use paired t tests between the two algorithms with a tolerance
of 5% and sample size of 25. The best algorithm is marked in
bold. It is apparent from Table-III that with a setting of learning
period LP=50 for D=10, SaDE-TDQL outperforms all the 25
benchmark functions, excluding three functions: f13, f14, and
f20. SaDE-TDQL performs consistently better than SaDE over
all the 58 benchmark instances out of 75 (considering 25
benchmark instances for each of three settings of dimensions,
D=10, 30, 50) as reported in Table-III, and the advantage of
SaDE-TDQL is very prominent as well.

To compare the relative speed of convergence and quality
of solution (accuracy) of DE-TDQL with five optimization
algorithms, namely DE/current-to-best/1, DE/rand/1,
DE/rand/either-or, SaDE, SaDE-TDQL, we in Fig. 1 plotted
the mean value of the objective function (mean best fitness)
taken over 25 runs versus function evaluations (FEs), and note
that DE-TDQL outperforms all other variants of DE considered
above, while SaDE-TDQL outperforms all algorithms
including DE-TDQL. The above observation indicates that the
incorporation of TDQL for scaling factor adaptation in a given
variant of DE always improves its performance in both quality
of solution and FEs.

A relative analysis in performance of the six algorithms
including DE-TDQL can be performed from Fig. 2. In Fig. 2(a)
we present a plot of accuracy (i.e., the difference between the
best cost function obtained after convergence and the cost
function at the theoretical optimum [48]) versus number of
FEs, while in Fig 2(b) we provide a plot of accuracy versus
run-time complexity. These plots provide a visual means of
demonstrating the performance of the algorithms with respect
to both accuracy and FEs/runtime. After scaling the x- and the
y-coordinates (in order to have a uniformity in order of
magnitude), we use the distance of a point from origin as a
measure of its performance. The smaller the measure, the better
is the performance of the algorithm. We now use ‘>=’ symbol
to represent the relative performance of two algorithms. Using
this convention, we note from Fig. 2(a) and (b) that the
performance of the six algorithms respectively is

DE-TDQL >= SaDE-TDQL>= SaDE>= DE/current-to-best/1
>= DE/rand/either-or>= DE/rand/1, and

SaDE-TDQL>= DE-TDQL>=SaDE>=DE/current-to-best/1 >=
DE/rand/either-or>= DE/rand/1 respectively.

Our experience of working with DE-TDQL substantiated by
the experimental results given in Fig. 2 indicates that the
proposed algorithm in general offers a good level of accuracy
at lower computational cost, measured by FEs and run-time
complexity. It is thus apparent from the above inequalities that
the introduction of TDQL in a particular variant of DE
improves its relative performance with that variant.

 As no evolutionary algorithm is full-proof, this also is equally
applicable for DE-TDQL as well. Although in most of the
traditional optimization problems with/without constraints and
any extension thereof (for example, multi-objective
optimization), the proposed DE-TDQL is expected to
outperform most of its competitors, it has a relatively poor
performance in dynamic optimization. The justification to its
failure is apparent because the scaling factors selected by
TDQL for individual member of the population usually should
not work under dynamic environment. For example, in stock
prediction problem [62], [63] undertaken by evolutionary
algorithms, DE-TDQL is expected to have worse performance
than common variants of DE particularly in time points, where
the parameters of the model used for prediction (say a
polynomial time-function) have abrupt changes. The
justification to this is apparent as the learnt scaling factors for a
given member of the population cannot be utilized for a new
set of model parameters. Similar situation is expected to occur
in path-planning problem of mobile robots with noisy sensory
measurements. We have performed some experiments with the
above two problems, but the details of this are outside the
purview of the present paper.

TABLE-I
PERFORMANCE OF THE PROPOSED DE-TDQL BASED AMA WITH OTHER VARIANTS OF DE (FOR D=50 AND CR=0.9)

TABLE-II-A
NO OF SUCCESSFUL RUNS OUT OF 25 RUNS AND SUCCESS PERFORMANCE IN PARENTHESIS (SUCCESS

PERFORMANCE=MEAN (FES FOR SUCCESSFUL RUNS)*(# OF TOTAL RUNS) / (# OF SUCCESSFUL RUNS)) FOR f01-f13

Functi
on No. DE/rand/1 DE/rand/either-or DE/current-to-best-

1 DE-TDQL Statistical
Significance

f 01 7.62981e-009
(5.76298e-009)

1.22946e-006
(7.71943e-007)

0.00000e+000
(0.00000e+000)

0.00000e+000
(0.00000e+000)

NA

f 02 1.06345e-002
(8.7392e-003)

1.46318e-006
(7.19554e-007)

0.00000e+000
(0.00000e+000)

0.00000e+000
(0.00000e+000)

NA

f 03 1.46740e+004
(7.5233e+003)

5.94211e-003
(2.37703e-003)

9.8472e-011
(2.94160e-011)

0.00000e+000
(0.00000e+000)

+

f 04 9.38707e-002
(7.25890e-002)

79104e-005
(1.53892e-005)

0.00000e+000
(0.00000e+000)

0.00000e+000
(0.00000e+000)

NA

f 05 2.42849e+002
(5.08024e+001)

2.85470e+000
(1.21284e+000)

9.5635e-005
(1.2491e-005)

2.27374e-012
(1.31602e-012)

+

f 06 1.11454e+002
(2.60841e+002)

1.64746e+002
(2.76433e+002)

1.35054e+000
(5.97550e+000)

4.78389e-001
(1.32220e+000)

+

f 13 2.82947e+000
(4.29449e-001)

2.90694e+000
(5.35088e-001)

2.15193e+000
(4.3762e-001)

1.18067e+000
(2.70485e-001)

+

f 15 6.53924e+002
(1.7351e+001)

6.80948e+002
(9.3627e+001)

4.28239e+002
(7.51763e+001)

4.29234e+002
(1.12549e+001)

-

f 16 1.80043e+002
(1.31896e+001)

1.77648e+002
(1.09782e+001)

1.65812e+002
(2.06795e+001)

1.12813e+002
(1.31497e+001)

+

f 17 2.03029e+002
(1.51955e+001)

2.01405e+002
(1.74092e+001)

1.78097e+002
(1.91219e+001)

1.34020e+002
(1.84988e+001)

+

f 18 8.40003e+002
(4.35765e+001)

8.48183e+002
(4.92894e+001)

7.49505e+002
(2.34925e+002)

7.63328e+002
(1.77011e+002)

+

f 19 8.30678e+002
(22685e+001)

8.46269e+002
(4.60059e+001)

8.23536e+002
(1.18894e+002)

8.19489e+002
(1.20251e+002)

+

f 20 8.75395e+002
(5.77017e+001)

8.51891e+002
(5.06452e+001)

8.16640e+002
(1.64708e+002)

6.84876e+002
(2.51560e+002)

+

f 21 1.10406e+003
(8.25569e+000)

1.07624e+003
(1.11391e+001)

1.03193e+003
(1.53154e+002)

7.08847e+002
(1.3880e+002)

+

f 22 5.28406e+002
(4.13118e-001)

5.27321e+002
(4.55182e-001)

6.06447e+002
(1.30617e+002)

7.63716e+002
(1.88575e+001)

-

f 23 1.10932e+003
(5.24023e+000)

1.09531e+003
(9.43862e+000)

1.02561e+003
(1.56514e+002)

8.88592e+002
(2.21409e+002)

+

f 24 8.4588e+002
(2.98500e+000)

8.0102e+002
(8.3361e+000)

7.5841e+002
(1.8062e+000)

7.5238e+002
(4.34601e+000)

+

f 25 8.3175e+002
(4.01108e+000)

7.9250e+002
(3.4899e+000)

7.6823e+002
(2.99705e+000)

9.9675e+002
(5.12610e+001)

+

Function
No. Tolerance DE/rand/1 DE/rand/either-or DE/current-to-best-1 DE-TDQL

f 01 1.00e-04 25 (1.64190e+004) 25 (2.00650e+004) 25 (4.51000e+003) 25 (2.63200e+003)

f 02 1.00e-02 13 (2.43519e+004) 25 (1.53580e+004) 25 (5.56200e+003) 25 (2.80000e+003)

f 03 1.00e+05 25 (1.90340e+004) 25 (6.96700e+003) 25 (2.4300e+003) 25 (1.59600e+003)

f 04 1.00e+00 25 (1.98130e+004) 25 (1.24390e+004) 25 (4.21900e+003) 25 (2.09400e+003)

f 05 1.00e+03 25 (1.41600e+004) 25 (6.95300e+003) 25 (2.06400e+003) 25 (7.21000e+002)

f 06 5.00e+02 24 (1.61698e+004) 22 (1.66045e+004) 25 (2.88100e+003) 25 (1.39100e+003)

f 07 2.00e+00 25 (7.18900e+003) 25 (6.88300e+003) 25 (1.68000e+003) 25 (9.31000e+002)

f 08 2.04e+01 15 (1.08550e+004) 18 (1.23597e+004) 18 (9.07500e+003) 25 (8.21800e+003)

f 09 5.00e+01 25 (4.53800e+003) 25 (9.69300e+003) 25 (1.74600e+003) 25 (5.13000e+002)

f 10 5.00e+01 25 (9.78600e+003) 25 (9.36200e+003) 25 (2.22500e+003) 25 (8.75000e+002)

f 11 9.20e+00 19 (9.39079e+003) 13 (7.97308e+003) 17 (9.55294e+003) 25 (6.18400e+003)

f 12 4.00e+04 25 (4.21100e+003) 25 (7.22700e+003) 25 (5.44900e+003) 25 (2.65300e+003)

f 13 00e+00 16 (1.25391e+004) 13 (1.71327e+004) 25 (7.53300e+003) 25 (2.15400e+003)

TABLE-II-B
NO OF SUCCESSFUL RUNS OUT OF 25 RUNS AND SUCCESS PERFORMANCE IN PARENTHESIS (SUCCESS

PERFORMANCE=MEAN (FES FOR SUCCESSFUL RUNS)*(# OF TOTAL RUNS) / (# OF SUCCESSFUL RUNS)) FOR f14-f25

TABLE-III
COMPARISON OF PERFORMANCE OF SADE AND SADE-TDQL WITH LP=50

 D=10 D=30 D=50
Functi
on No. SaDE SaDE-

TDQL
Stat.
sig. SaDE SaDE-

TDQL
Stat.
sig. SaDE SaDE-

TDQL
Stat.
sig.

f01 3.02e-27
(2.13e-21)

0.00e+00
(0.00e+00) + 6.24e-29

(1.65e-10)
0.00e+00

(0.00e+00) + 2.33e-10
(1.65e-10)

0.00e+00
(0.00e+00) +

f02 1.56e-09
(2.52e-05)

3.34e-16
(0.00e+00) + 1.66e-05

(1.12e-04)
7.17e-10

(5.06e-07) + 1.59e-02
(1.12e-02)

7.17e-07
(5.07e-07) +

f03 8.02e-04
(5.36e-04)

2.37e-13
(1.29e-19) + 4.75e-04

(3.35e-05)
1.57e-10

(7.21e-05) + 4.75e+01
(3.35e-01)

1.02e-04
(7.21e-05) +

f04 5.40e-03
(3.17e-05)

1.23e-05
(0.00e+00) + 5.22e-01

(1.92e-05)
9.69e-02

(0.00e+00) + 2.77e+01
(1.95e-01)

9.69e-02
(6.85e-02) +

f05 6.74e-05
(5.05e-09)

3.20e-10
(4.19e-09) + 8.00e-03

(0.00e+00)
4.72e-07

(3.02e-07) + 8.00e-03
(5.60e-03)

4.49e-08
(3.15e-08) +

f06 2.05e+01
(8.69e-06)

6.38e+00
(3.14e-05) + 3.33e+01

(1.93e-03)
5.97e+00
(4.80e-03) + 5.97e+00

(1.02e-01)
5.29e+00
(7.70e-01) +

f07 1.25e-03
(0.00e+00)

1.45e-05
(0.00e+00) + 1.27e-03

(0.00e+00)
1.27e-03

(0.00e+00) NA 1.27e-03
(0.00e+00)

1.27e-03
(0.00e+00) NA

f08 2.06e+01
(1.41e-17)

2.05e+01
(1.44e-19) + 2.04e+01

(7.07e-10)
2.05e+01
(4.10e-15) - 2.05e+01

(7.07e-12)
2.04e+01
(7.07e-02) +

f09 2.71e-10
(0.00e+00)

0.00e+00
(8.62e-28) + 8.35e-08

(5.73e-08)
2.21e-11

(0.00e+00) + 2.37e-09
(1.48e-09)

2.21e-11
(1.56e-11) +

f10 2.45e+01
(1.18e-04)

1.13e+01
(7.07e-06) + 3.38e+01

(3.53e-02)
1.06e+01

(0.00e+00) + 2.88e+01
(3.04e+00)

1.06e+01
(4.94e-01) +

f11 7.29e+00
(1.41e-09)

6.27e+00
(6.64e-13) + 8.40e+00

(1.19e-11)
6.71e+00
(4.10e-17) + 6.71e+00

(4.10e-08)
6.13e+00
(9.89e-02) +

f12 2.45e+03
(4.31e-04)

2.47e+03
(1.26e-05) - 1.80e+03

(3.74e-04)
1.27e+03
(2.82e-01) + 1.27e+03

(8.34e-02)
1.23e+03
(8.76e-02) +

f13 6.38e-01
(3.11e-11)

9.01e-01
(0.00e+00) - 5.64e-01

(1.10e-10)
1.30e+00
(5.20e-01) - 7.20e-01

(5.79e-07)
5.64e-01

(2.38e-01) +

f14 3.53e+00
(1.34e+00)

3.86e+00
(2.12e-01) - 2.59e+00

(1.05e-05)
3.83e+00
(8.76e-01) - 4.08e+00

(3.88e-01)
2.59e+00
(8.98e-01) +

f15 3.32e+00
(4.46e-01)

2.96e-01
(6.25e-02) + 4.00e+00

(0.00e+00)
2.28e+00

(1.21e+00) + 4.00e+00
(4.80e-01)

4.00e+00
(2.61e+00) NA

f16 1.32e+02
(1.27e-04)

1.11e+02
(4.95e-04) + 1.43e+02

(1.06e-04)
1.10e+02

(0.00e+00) + 1.28e+02
(2.82e+00)

1.10e+02
(7.07e-01) +

f17 1.85e+02
(0.00e+00)

1.57e+02
(6.36e-07) + 1.73e+02

(2.40e-01)
1.53e+02

(0.00e+00) + 2.07e+02
(1.55e+01)

1.53e+02
(2.82e+00) +

f18 8.00e+02
(1.63e-04)

3.28e+02
(1.97e-05) + 3.98e+02

(6.36e-07)
3.89e+02
(5.79e-02) + 3.89e+02

(2.90e-03)
3.07e+02
(1.48e-01) +

f19 5.31e+02
(2.00e-03)

3.00e+02
(2.62e-06) + 8.00e+02

(2.54e-02)
4.40e+02
(8.83e-02) + 4.40e+02

(6.43e+00)
3.15e+02

(1.06e+00) +

f20 8.00e+02
(2.00e+01)

3.00e+02
(2.02e-19) + 8.00e+02

(0.00e+00)
3.74e+02

(2.82e+00) + 8.00e+02
(0.00e+00)

3.70e+02
(4.94e-01) +

f21 5.00e+02
(0.00e+00)

5.00e+02
(0.00e+00) NA 8.00e+02

(0.00e+00)
5.00e+02

(0.00e+00) + 8.00e+02
(2.12e+01)

5.00e+02
(0.00e+00) +

f22 7.68e+02
(0.00e+00)

8.20e+02
(2.40e+00) - 7.82e+02

(1.41e+01)
7.62e+02

(1.90e+01) + 7.62e+02
(4.24e+00)

7.89e+02
(2.19e+01) -

f23 9.29e+02
(1.47e-03)

5.59e+02
(0.00e+00) + 1.18e+03

(0.00e+00)
5.59e+02

(0.00e+00) + 1.18e+03
(1.77e-02)

5.59e+02
(0.00e+00) +

f24 2.00e+02
(0.00e+00)

2.00e+02
(2.33e-17) NA 7.54e+02

(3.91e-05)
2.00e+02

(0.00e+00) + 2.00e+02
(0.00e+00)

2.00e+02
(0.00e+00) NA

f25 2.00e+02
(1.13e-07)

2.00e+02
(0.00e+00) NA 2.00e+02

(0.00e+00)
2.00e+02

(0.00e+00) NA 2.00e+02
(0.00e+00)

2.00e+02
(0.00e+00) NA

Function
No. Tolerance DE/rand/1 DE/rand/either-or DE/current-to-best-1 DE-TDQL

f 14 4.15e+00 14 (1.30357e+004) 23 (8.75217e+003) 25 (6.40800e+003) 25 (7.38000e+002)

f 15 7.08e+02 25 (4.74000e+003) 19 (1.01908e+004) 25 (5.7000e+002) 25 (1.66000e+002)

f 16 2.24e+02 25 (6.45000e+003) 25 (7.20100e+003) 25 (5.8800e+003) 25 (1.28000e+003)

f 17 2.50e+02 25 (6.91100e+003) 25 (8.22500e+003) 25 (5.8900e+003) 25 (1.28400e+003)

f 18 8.50e+02 21 (5.96667e+003) 19 (2.53158e+003) 18 (1.01111e+003) 22 (2.36250e+003)

f 19 8.50e+02 23 (5.43913e+003) 19 (2.86184e+003) 20 (8.66250e+002) 16 (1.54688e+003)

f 20 8.75e+02 13 (4.81538e+003) 18 (2.19444e+003) 17 (6.85294e+002) 20 (2.17250e+003)

f 21 1.10e+03 6 (1.96667e+004) 24 (1.77708e+004) 25 (3.8100e+003) 25 (1.14200e+003)

f 22 8.00e+02 25 (5.45000e+002) 25 (4.46000e+002) 20 (5.8500e+003) 22 (8.60227e+002)

f 23 1.15e+03 25 (4.6900e+003) 25 (6.5100e+003) 25 (1.02500e+003) 24 (8.35417e+002)

f 24 4.10e+02 25 (4.54500e+003) 25 (1.0000e+003) 25 (8.86000e+002) 25 (5.40000e+002)

f 25 4.50e+02 25 (1.64800e+003) 25 (1.49400e+003) 25 (9.4000e+002) 20 (7.3750e +002)

410 410

410 410

410 410

410 410

410 410

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 104

Number of FEs

Be
st

 O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

s

f04

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 104

Number of FEs

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

f07

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

Number of FEs

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

f15

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

Number of FEs

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

f17

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

0 10 20 30 40 50 60 70 80 90 100
0

250

500

750

1000

1250

1500

Number of FEs

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

f19

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

0 10 20 30 40 50 60 70 80 90 100
0

300

600

900

1200

1500

1800

2100

Number of FEs

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

f20

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

0 10 20 30 40 50 60 70 80 90 100
100

400

700

1000

1300

1600

1900

2200

Number of FEs

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

f22

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

0 10 20 30 40 50 60 70 80 90 100
200

350

1300

500

650

800

950

1100

1250

1400

1550

Number of FEs

B
es

t O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

f25

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
SaDE
DE-TDQL
SaDE-TDQL

Fig. 1: Relative performance in mean best fitness function versus function evaluation for DE-TDQL and SaDE-TDQL over other

competitive algorithms: SaDE, DE, PSO, DE for f04, f07, f15, f17, f19, f20, f22 and f25

410

210

010

210
410

210

1010

610

410

1210

710

110

310

210

110

010

110

10 20 30 40 50 60 80 90 100
Number of FEs

Ac
cu

ra
cy

f14

DE-TDQL
SaDE-TDQL
SaDE
DE/current-to-best/1
DE/rand/either-or
DE/rand/1

10 20 30 40 50 60 70 80 90 100
Number of FEs

A
cc

ur
ac

y

f19

DE-TDQL
SaDE-TDQL
SaDE
DE/current-to-best/1
DE/rand/1
DE/rand/1

0 10 20 30 40 50 60 70 80 90 100
Number of FEs

A
cc

ur
ac

y

f25

DE-TDQL
SaDE-TDQL
SaDE
DE/current-to-best/1
DE/rand/either-or
DE/rand/1

Fig. 2(a): Relative performance in accuracy versus function evaluation for DE-TDQL and SaDE-TDQL over other competitive

algorithms: SaDE, DE, PSO, DE for f14, f19 and f25 with Max_FEs=106

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Run-time in Seconds

Ac
cu

ra
cy

f14

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
DE-TDQL
SaDE-TDQL
SaDE

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Average Run-time in Seconds

Ac
cu

ra
cy

f19

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
DE-TDQL
SaDE-TDQL
SaDE

0 100 200 300 400 500 600 700 800 900
Average Run-time in Seconds

A
cc

ur
ac

y

f25

DE/rand/1
DE/rand/either-or
DE/current-to-best/1
DE-TDQL
SaDE-TDQL
SaDE

Fig. 2(b): Relative performance in accuracy versus average run-time for DE-TDQL and SaDE-TDQL over other competitive

algorithms: SaDE, DE, PSO, DE for f14, f19 and f25 with total no. of runs=25 and Max_FEs=106

D=10

D=30

D=50

D=10

D=30

D=50

D=10
D=30

D=50

VI. A CASE STUDY IN MULTI-ROBOT PATH-PLANNING
Multi-robot path-planning refers to determining the trajectory
of motion of robots between pre-defined starting and goal
positions in a given world map. Usually, one or more
optimality criteria are imposed in path-planning problems. The
criteria include minimization of the total path/time of traversal
or energy or their combinations. This paper provides a solution
to the multi-robot path-planning problem using evolutionary
algorithm. Here, we formulated multi-robot path-planning as an
optimization problem with an objective to minimize the total
traversed path by the robots without hitting
obstacles/teammates. The problem has been solved here using
the proposed DE-TDQL based AMA. Both centralized and
distributed approaches to multi-robot path-planning are found
in the literature [24], [25], [49]. Here, we attempt to solve the
problem using distributed approach, particularly for its good
time-efficiency [72]. Computer simulations are used to study
the relative performance of the proposed realization using DE-
TDQL with respect to other well-known optimization
algorithms.

A. Formulation
In the present context, we consider a 2-dimensional work-
space, partitioned into equal sized square grids containing two
or more mobile robot and obstacles with linear boundary. The
robots are considered to have circular geometry with radius less
than half of a side of the square grids. Grids are referred to by
their distinct integer addresses. The obstacles are represented
by the coordinates of their vertices. They can be of arbitrary
shape and need not be encapsulated within grids. The starting
and the goal coordinates for each robot are fixed in the work-
space, and these coordinates need not necessarily fall in a grid.
A potential robot path between a given starting and a goal
position is constructed by joining two or more line segments.
The line segments pass through a number of junctions, called
intermediate nodes. The intermediate nodes are symbolized by
their grid numbers. A robot path is considered to be feasible, if
none of the line segments intersect any obstacles. While
planning a trajectory for a robot, other mobile robots are
considered as moving obstacles. The path-planning problem for
each robot is executed in steps until all robots reach their
respective (predefined) goal positions. The formulation
considers the evaluation of the next position of the robots from
their current position.

Here, we represent a solution by a structure containing n
fields, where the first (S) and the last fields (T) indicate the
starting and the goal positions of the mobile robot. The second
onwards successive (n-2) fields represent the intermediate
nodes. Fig. 4 gives a pictorial representation of a solution
encoding a possible path for a mobile robot within the
workspace as shown in Fig. 3.

We now propose an evaluation method to first check the
feasibility of a path, by detecting intersection between its
constituent line segments and obstacles/teammates in the
robots’ world map. If all the line segments in a path are found
to be free from intersection, the path length, defined by sum of
the length of the line segments in the planned path, is assigned
as its cost indicating the quality of the solution. Otherwise, the

evaluation method assigns the cost by estimating the ‘depths’
of intersection of the constituent lines lying on the path with
obstacles. The cost thus measured is an indirect measure of the
difficulty faced by the path to escape from obstacles. A cost
function [49] for a solution representative of a possible path for
the i-th robot is given in (13).

 Fig. 3: The theoretical and planned paths denoted by solid and dashed line
between a given starting and a goal position

Starting Point Intermediate nodes represented by grid numbers Target Point

Fig. 4: An example of solution in the DE-TDQL-based multi-robot motion
planning

N

j
jji CdF

1
 (13)

where N is the number of line segments in a path, dj is the
Euclidean distance of the two successive nodes forming the j-th
line segment. The factor C is used to maintain uniformity in
order of magnitude of the two summations. βj is the coefficient
denoting depth of collision, which is defined as

M

1k
k

j obstacles with intersectssegment lineth j if

feasible issegment lineth j if 0

(14)
Here, M is the number of obstacles the j-th line segment
intersects, and αk is determined by measuring the depth of an
intersecting line-segment with an obstacle k. αk is defined as
the shortest moving distance for escaping the intersected
obstacle [49]. The cost function Fi is to be minimized to
determine the next position of robot i. The minimization of Fi is
to be performed for all i in parallel. This has been taken care of
by n DE-TDQLs each engaged to minimize one Fi for i =1 to n,
where n is number of robots.

 We now illustrate the measurement of αk and βj in Fig. 5.
In Fig. 5(a), αk is treated as the shortest distance to move the
line out of the obstacle k. Fig. 5(d) elucidates a special
example, where the line segment intersects two obstacles. It is
evident that it is very difficult to determine the amount of shift
of the line segment that will make it possible to move away
from both obstacles. So the sum of α1 and α2 is used for
calculation of βj. For other complex configurations, the reader
may consult the paper by Yang [49].

S 87 75 54 33 13 T

(a) βj= αk (b) βj= α1+ α2

Fig. 5: Definition of the coefficient βj

B. Experiments
The experiments were undertaken in two phases, first by
computer simulation on a Pentium machine, and later on a real
platform using two Khepera II mobile robots.

B.1. Experiments in Simulated Environment
Experiments were performed with n (2≤ n≤14) similar soft-bots
of circular cross section on a Pentium machine. The radius of
robot was set to 6 pixels. For each robot the starting and the
goal points are pre-defined prior to initiating the experiment.
The experiments were performed with 2, 4, 6, 8 and 10
differently shaped obstacles. While performing the
experiments, old obstacles were retained and new obstacles
were added. Extensive experiments were performed with 50
world maps of diverse configurations. One of our experimental
world-maps with 2 dark obstacles, given starting and goal
positions of 6 circular soft-bots, and theoretical (straight line
paths) and planned trajectories (curved paths) obtained by
minimization of (13) in each step of planning using DE-TDQL
is shown in Fig. 6.

Fig. 6: The theoretical and planned paths denoted by solid and dashed line
between given starting and goal positions for 6 robots and 2 obstacles

B.2. Experiments in Real Environment on Khepera- II
Platform

The experiment was undertaken with a world map of 8 6
grids of equal size and two Khepera-II mobile robots (diameter
of 7 cm). Each robot is equipped with 8 infrared sensors, two
motor driven side wheels and one caster wheel. The range
sensors are positioned at fixed angles and have limited range
detection capabilities. The sensors are numbered between 0 and
7 with the leftmost sensor, designated by 0, and the rightmost
by 7. The robot represents measured range data in the scale: [0,
1023]. When an obstacle is away from the sensor by more than
5cm, it is represented by zero. When an obstacle is
approximately 2 cm away, it is represented by 1023. The

onboard Microprocessor includes a flash memory of 512 KB,
and a Motorola 68331, 25MHz processor.

The robots were controlled by two Pentium-IV personal
computers (PCs) through wired connections. The robots were
used to sense obstacles around them in the world map and turn
wheels by motor firing for controlled movement in prescribed
directions. A control program that determines the next position
of a robot from its current position using DE-TDQL based
optimization algorithm is run on the attached Pentium machine.
The necessary commands for motor movements are transferred
to the robots from their connected computers. One sample run
of path-planning in the real environment is given in Fig. 7. It is
observed from Fig. 7 that the robots follow the shortest paths
avoiding collision with obstacles. The experiment was
performed on 10 different world maps of different grid counts,
each with five different obstacle-maps, and in all the 50
environments the robots could successfully trace the shortest
paths.

 DE-TDQL

 SaDE

 DE

 PSO

 GA

Fig. 7: Trajectories planned by execution of different algorithms in Khepera
environment with five obstacles

C. Performance Analysis
To determine a quantitative measure of the relative
performance of different algorithms, we use two metrics
suggested in [24][26]. We here reproduce below the
definitions of the two performance metrics for the sake of
completeness of the paper.

Average total path deviation (ATPD) [24]: Let Pik be a
path from the starting point Si to the goal point Gi generated by
the program for robot Ri in the k-th run. If Pi1, Pi2,…, Pik are the
paths generated over k runs then the average path traversed

(APT) by robot Ri is given by

k

j
ij kP

1
/ and the average path

deviation for this robot is evaluated by measuring the
difference between APT and the ideal shortest path between Si

to Gi (with minimum threshold spacing with each obstacle).
The threshold in our experiment was considered to be one
pixel. If the ideal path for robot Ri obtained geometrically is Pi-

ideal, then the Average Path Deviation is given by

k

j
ijideali kPP

1
/ Therefore for n robots in the workspace the

Average Total Path Deviation (ATPD) is

n

i

k

j
ijideali kPP

1 1
/ .

Average Uncovered Target Distance [26]: Given a goal
position Gi and the current position Ci of a robot on a 2-
dimensional workspace, where Gi and Ci are 2-dimensional
vectors, the uncovered distance of robot i is || G i - Ci ||, where
||.|| denotes Euclidean norm. For n robots, uncovered target
distance (UTD) is the sum of ii CG i.e.,

.
1

n

i
ii CGUTD Now, for k runs of the program, we

evaluate the average of UTDs and call it the Average
Uncovered Target Distance (AUTD). In all our experiments,
we set k =10.

 (a) (b)

(c) (d)

(e)

Fig. 8: Final configuration of the world map after execution of the (a) DE-
TDQL- (b) SaDE- (c) DE- (d) PSO- and (e) GA- based simulations with 6
robots and 2 obstacles requiring 23, 25, 29, 32 and 34 steps respectively.

The performance analysis was undertaken on simulation
environment. First we plot APT for n robots, called Average
Total Path Traversed (ATPT) by varying n from 2 to 10 by
generating paths using 5 different algorithms, including real
coded GA, PSO, DE/current-to-best/1, SaDE and DE-TDQL. It
is noteworthy from Fig. 9 that DE-TDQL has the least ATPT in
comparison to other algorithms irrespective to the number of
robots.

The second study on performance analysis was undertaken
by plotting ATPD by generating paths by five different
evolutionary algorithms (as used in APT) with number of

robots as variable. Fig. 10 provides the results of ATPD
computation when number of robots varies between 2 to 10.
Here too we observe that DE-TDQL outperforms the remaining
four algorithms as ATPD remains the smallest for DE-TDQL
irrespective to the no. of robots.

The last analysis on performance was undertaken by
comparing AUTD over the no. of planning steps. Fig. 11
provides a plot of AUTD when the paths are planned using the
five algorithms referred to above with number of obstacles = 5
and no. of robots=5. It is apparent from Fig. 11 that AUTD
returns the smallest value for DE-TDQL irrespective of number
of planning steps.

In brief, the proposed DE-TDQL based path-planning
outperforms all the four other algorithms with respect to all
three popular metrics.

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Robots

A
ve

ra
ge

 T
ot

al
 P

at
h

Tr
av

er
se

d

GA
PSO
DE
SaDE
DE-TDQL

Fig. 9: Average total path traversed vs. number of robots with number of

obstacles= 5 (constant)

2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

Number of Robots

A
ve

ra
ge

 T
ot

al
 P

at
h

D
ev

ia
tio

n

GA
PSO
DE
SaDE
DE-TDQL

Fig. 10: Average total path deviation vs. number of robots with number of

obstacles= 5 (constant)

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Number of Steps

A
ve

ra
ge

 U
nc

ov
er

ed
 T

ar
ge

t D
is

ta
nc

e
GA
PSO
DE
SaDE
DE-TDQL

Fig. 11: Average uncovered target distance vs. number of steps with number of

robots=5 (constant) and obstacles= 5 (constant)

Fig. 7 provides experimentally obtained trajectories planned
by two mobile robots using five different algorithms, including
DE-TDQL, SaDE, DE/current-to-best/1, PSO and GA. Results
of the experiments performed are summarized in Table-IV.
Three performance metrics, namely 1) total number of steps
taken to reach the goal, 2) APT, and 3) ATPD have been used
here too to determine the relative merits of DE-TDQL over
other algorithms. Table-IV confirms that DE-TDQL
outperforms the remaining four algorithms with respect to all
the three metrics.

TABLE-IV
COMPARISON OF NUMBER OF STEPS, AVERAGE PATH TRAVERSED AND

AVERAGE TOTAL PATH DEVIATION BY THE ROBOTS

Algorithms

Total
Number
of Steps

ATPT

(inch.)

ATPD

(inch.)

DE-TDQL 10 42.2 7.2

SaDE 12 44.9 9.9

DE 17 46.4 11.4

PSO 19 47.1 12.1

GA 23 50.0 15.0

VII. CONCLUSION
The paper introduced a new technique for efficiently
employing DE and Q-learning together to develop an adaptive
memetic algorithm. A relative comparison of the proposed
technique with four variants of DE algorithms, including
SaDE (the currently known best-performing DE) envisages
that the proposed DE-TDQL algorithm outperforms all its
competitors with respect to accuracy and runtime required for
convergence jointly. A set of 25 CEC 2005 benchmark
functions proposed by Suganthan has been used to arrive at the
above conclusions.

Besides the above, one more fundamental claim of this
paper is that if TDQL is used to select scaling factors of any
variants of DE, the modified algorithm would outperform its
fundamental counterpart both in accuracy and convergence
time. For example, SaDE-TDQL has shown to have better

performance in accuracy and runtime jointly than SaDE, its
fundamental constituent. The basis of the above conclusion
follows directly from a measure of distance between the
coordinates of each algorithm and the origin in the accuracy
versus runtime space. The experimental results thus strongly
claim that SaDE-TDQL can significantly enhance the
performance of SaDE due to the adaptation of scaling factors
of SaDE by the use of TDQL.

A case study on multi-robot path- planning problem has
been undertaken to demonstrate the relative merits of using the
proposed DE-TDQL based AMA over other algorithms. A
formulation of the objective function for the problem has been
given following [49], and the DE-TDQL algorithm is
employed to minimize the objective function in order to
determine the next position of all the robots from their current
positions in the given world map. The experiments undertaken
reveal that the DE-TDQL based AMA here too outperforms
classical DE and PSO, real coded GA and SaDE algorithms
with respect to two parameters AUTD and ATPD. The
experiments performed with Khepera-II mobile robots also
indicate that DE-TDQL based AMA outperforms other
realizations in real environment, thereby justifying the efficacy
of the proposed algorithm.

REFERENCES

[1]. Richard Dawkins, “The Selfish Gene”, Oxford University Press, 1976.
[2]. Yew-Soon Ong, Meng-Hiot Lim and Xianshun Chen, “Memetic

Computation – Past, present and future.” IEEE Computational
Intelligence, May 2010.

[3]. Y. S. Ong, M. H. Lim, Ning Zhu and Kok-Wai Wong “Classification of
Adaptive Memetic Algorithms: A Comparative Study” in IEEE Trans.
on Systems, Man and Cybernetics, Vol.36, No.1, February 2006.

[4]. P. Cowling, G. Kendall and E. Soubeiga, “A hyperheuristic approach to
scheduling a sales Summit”, in PATAT 2000, Springer Lecture
Notes in Computer Science, Konstanz, Germany. Aug 2000, pp 176-190.

[5]. G. Kendall, P. Cowling and E. Soubeiga, “Choice function and random
hyperheuristics,” in Proc.4th Asia-Pacific Conference on simulated
Evolution and Learning, Singapore, Nov.2002, pp.667-671.

[6]. Sridhar Mahadevan, “Average Reward Reinforcement Learning:
Foundations, Algorithms, and Empirical Results”, Machine Learning ,
Special Issue on Reinforcement Learning (edited by Leslie Kaebling),
Vol. 22, pp. 159-196, 1996.

[7]. Watkins, C., “Learning from delayed rewards”, PhD dissertation, King’s
College, Cambridge, England, 1989.

[8]. Watkins, C. and Dayan, P., “Q-learning”, Machine Learning, Vol. 8, pp.
279- 292, 1992.

[9]. T. Dean, K. Basye, and J. Shewchuk,.“Reinforcement learning for
planning and control”. In: Minton, S(ed) Machine Learning Methods for
Planning and Scheduling: Morgan Kaufmann199

[10]. R. Storn and K. V. Price, “Differential Evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, Vol. 11, no. 4, pp. 341–359, 1997.

[11]. R. Storn, K. V. Price, and J. Lampinen, “Differential Evolution–A
Practical Approach to Global Optimization”, Berlin, Germany:
Springer- Verlag, 2005.

[12]. T. Rogalsky, R. W. Derksen, and S. Kocabiyik, “Differential evolution
in aerodynamic optimization,” in Proc. 46th Annu. Conf. Can.
Aeronautics Space Inst., 1999, pp. 29–36.

[13]. S. Das and A. Konar, “Design of two dimensional IIR filters with
modern search heuristics: A comparative study,” Int. J. Comput. Intell.
Applicat. Vol. 6, no. 3, pp. 329–355, 2006.

[14]. J. Lampinen. (1999), “A bibliography of differential evolution
algorithm”, Lappeenranta University of Technology. Department of
Information Technology, Laboratory of Information Processing, Tech.
Report [Online]. Available: http://www.lut.fi/jlampine/debiblio.htm

[15]. M. Omran, A. P. Engelbrecht, and A. Salman, “Differential evolution
methods for unsupervised image classification,” in Proc. 7th Congr.
Evol. Comput. (CEC-2005), Vol. 2. Piscataway, NJ: IEEE Press, pp.
966–97

[16]. S. Das, A. Abraham, and A. Konar, “Adaptive clustering using improved
differential evolution algorithm,” IEEE Trans. Syst., Man, Cybern. A,
Vol. 38, no. 1, pp. 218–237, Jan. 2008.

[17]. J. Lampinen, and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proc. MENDEL 2000”, 6th Int.Mendel Conf. Soft
Computing, Brno, Czech Republic, Jun. 2000, pp. 76–8

[18]. J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real parameter
optimization with differential evolution,” in Proc. IEEE Congr. Evol.
Comput. (CEC-2005), Vol. 1. Piscataway, NJ: IEEE Press, pp. 506–51

[19]. E. Mezura-Montes, J. Velázquez-Reyes, and C. A. C. Coello, “A
comparative study of differential evolution variants for global
optimization,” in Proc. Genetic Evol. Comput. Conf. (GECCO 2006),
pp. 485–492.

[20]. U. K. Chakraborty, S. Das, and A. Konar, “Differential evolution with
local neighborhood,” in Proc. IEEE Congr. Evol. Comput. (CEC-2006),
Piscataway, NJ: IEEE Press, pp. 7395–7402.

[21]. K. V. Price, “An introduction to differential evolution,” in New Ideas
Optimization. London, U.K.: McGraw-Hill, 1999, pp. 293–298.

[22]. P.N. Suganthan, N. Hansen , J.J. Liang, K. Deb, Y. P. Chen A. Auger, S.
Tiwari, “Problem Definitions and Evalution Criteria for The CEC
2005”.

[23]. J. Chakraborty., A. Konar., L. C. Jain, and U. Chakraborty, “Co-
operative Multi Robot Path Planning Using Differential Evolution”
Journal of Intelligent & Fuzzy systems, Vol 20, pp.13-27, 2009.

[24]. J. Chakraborty and S. Saha, “Co-operative Multi-robot Path Planning
Using Particle Swarm Optimization,” in Proc. of IEEE WIE National
Symposium on Emerging Technologies, 2007.

[25]. J. Chakraborty and A. Konar, “A Distributed Multi –Robot Path
Planning Using Particle Swarm Optimization,” in 2nd National
Conference on Recent Trends in Information Systems, pp216-221, 2008.

[26]. J. Chakraborty, A. Konar, U. K. Chakraborty and L. C. Jain,
“Distributed Co-operative Multi Robot Path Planning Using Differential
Evolution” in IEEE Congress on Evolutionary Computation, 2009.

[27]. D. Fogel and H-G. Beyer, “A Note on the Empirical Evaluation of
Intermediate Recombination”, Evolutionary Computations, 3(4), pp-491-
495.

[28]. A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization”, Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, Vol. 2, pp. 1785–1791, 2005.

[29]. J. Brest, B. Boˇskovi´c, S. Greiner, V. ˇZumer, and M. Mauˇcec,
“Performance comparison of self-adaptive and adaptive differential
evolution algorithms”, Soft Computing-A Fusion of Foundations,
Methodologies and Applications, Vol. 11, no. 7, pp. 617–629, 2007.

[30]. Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and
Michael L. Littman, “Pac model-free reinforcement learning”, in Proc.
23nd ICML 2006, pp. 881–888, 2006.

[31]. D. Pandey, and P. Pandey, “Approximate Q-Learning: An Introduction”,
in Machine Learning and Computing (ICMLC), Second International
Conference, 2010, pp. 317 – 320.

[32]. T. Murata, and M. Yamaguchi, “Multi-Legged Robot Control Using
GA-Based QLearning Method With Neighboring Crossover”, in
Frontiers in Evolutionary Robotics, Iba (Ed.), pp. 341-352, I-Tech
Education and Publishing, ISBN 9783902613196, Vienna, Austria,
2008.

[33]. T. Murata, and Y. Aoki, “GA-Based Q-Learning to Develop Compact
Control Table for Multiple Agents”, in New Achievements in
Evolutionary Computation, InTech, February 2010.

[34]. Z. Zhu, Z. Ji, and S. Jia, “Memetic Ant Colony Optimization for Band
Selection of Hyperspectral Imagery Classification”, in CCPR 2010, pp.
1012-1017, October 21-23, Chongqing, China.

[35]. L. Shu, and H. Iba, “A study on the computational efficiency of
Baldwinian evolution”, in Nature and Biologically Inspired Computing
(NaBIC), Second World Congress, pp. 467 – 472, February 2011.

[36]. A. M. Farahmand, M. N. Ahmadabadi, C. Lucas, and B. N. Araabi,
“Interaction of Culture-Based Learning and Cooperative Co-Evolution
and its Application to Automatic Behavior-Based System Design”, in
Evolutionary Computation, IEEE Transactions, Vol. 14, pp. 23-57,
January, 2010.

[37]. S. Wei, Y. Wang, Y. Yang, F. Yin, W. Cao, and Y. Tang, “Applying Q-
Learning Algorithm to Study Line-Grasping Control Policy for
Transmission Line Deicing Robot”, in Intelligent System Design and
Engineering Application (ISDEA), pp. 382 – 387, 2010.

[38]. M. Simsek, A. Czylwik, A. Galindo-Serrano, and L. Giupponi,
“Improved decentralized Q-learning algorithm for interference reduction
in LTE-femtocells”, in Wireless Advanced (WiAd), pp. 138 – 143,
2011.

[39]. D. Osmankovic, and S. Konjicija, “Implementation of Q-Learning
algorithm for solving maze problem”, in MIPRO, Proceedings of the
34th International Convention, pp. 1619 – 1622, July, 2011.

[40]. W. Liu, Y. Tan, and Q. Qiu, “Enhanced Q-learning algorithm for
dynamic power management with performance constraint”, in Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 602
– 605, April, 2010.

[41]. Y. Ong, M. Lim, N. Zhu, and K. Wong, “Classification of adaptive
memetic algorithms: a comparative study”, in Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions, February, 2006.

[42]. N. Shahidi, H. Esmaeilzadeh, M. Abdollahi, E. Ebrahimi, and C. Lucas,
“Self-adaptive memetic algorithm: an adaptive conjugate gradient
approach”, in Cybernetics and Intelligent Systems, IEEE Conference,
Vol. 1, pp. 6 – 11, July, 2005.

[43]. S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential
Evolution Using a Neighborhood-Based Mutation Operator” by IEEE
Transactions on Evolutionary Computation, Vol. 13, No. 3, pp. 526-553,
June 2009.

[44]. I. Goswami (Chakraborty), P. Kumar Das, A. Konar and R. Janarthanan,
“Conditional Q-learning Algorithm for Path-Planning of a Mobile
Robot,” 2010 International Conference on Industrial Electronics,
Control and Robotics, pp. 23 – 27, Dec. 27-29, 2010.

[45]. P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, A. K. Nagar,
“Multi-Robot Path-Planning Using Artificial Bee Colony Optimization
Algorithm”. NaBIC 2011: 219-224.

[46]. J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test
functions for numerical global optimization,” in Proc. IEEE Swarm
Intell. Symp. Pasadena, CA, Jun. 2005, pp. 68–75.

[47]. A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical
Optimization”, in IEEE Transactions on Evolutionary Computation,
Vol. 13, NO. 2, APRIL 2009, pp- 398 – 417.

[48]. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger,
and S. Tiwari, “Problem Definitions and Evaluation Criteria for the CEC
2005 Special Session on Real-Parameter Optimization”, in Technical
Report. 2005. Nanyang Technological University, Singapore, May 2005
AND KanGAL Report #2005005, IIT Kanpur, India.

[49]. S. X. Yang, Y. Hu, and M. Q. H. Meng, “A Knowledge Based GA for
Path Planning of Multiple Mobile Robots in Dynamic Environments”,
IEEE Conference on Robotics, Automation and Mechatronics, June
2006, pp. 1-6.

[50]. C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki, “Motion
Planning on a Graph”, Proceedings of STOC, 1994.

[51]. G. Swaminathan, “Robot Motion Planning”, February 2006.
[52]. C. L. Shih, T. T. Lee, and W. A. Gruver, “Motion-Planning with Time-

Varying Polyhedral Obstacles based on Graph Search and Mathematical
Programming”, IEEE International Conference on Robotics and
Automation, 1990, pp. 331-337.

[53]. R. Glasius, A. Komoda, and S. Gielen, “Neural Network Dynamics for
Path Planning and Obstacle Avoidance”, Neural Networks, March 1994.

[54]. P. Payeur, H. L. Huy, and C. Gosselin, “Robot Path Planning using
Neural Networks and Fuzzy Logic”, International Conference on
Industrial Electronics, Control and Instrumentation, September, 1994.

[55]. I. Gupta, and D. Riordan, “Path Planning for Mobile Robots using Fuzzy
Logic”,www.unbsj.ca/conferences/apics/2004/documents/GuptaRiordan
NEW.doc, March 3, 2008.

[56]. I. Hassanzadeh, and S. M. Sadigh, “Path Planning for a Mobile Robot
using Fuzzy Logic Controller Tuned by GA”, International Symposium
on Mechatronics and its Applications, March 2009.

[57]. Z. Michalewicz, L. Zhang, and K. Trojanowsky, “Adaptive Evolutionary
Planner/ Navigator for Mobile Robots”, IEEE Transactions on
Evolutionary Computation, April, 1997.

[58]. T. Shibata, and T. Fukuda, "Intelligent Motion Planning by Genetic
Algorithm with Fuzzy Critic", Proc. 8th IEEE Int. Symp. Intelligent
Control, 1993, pp.565 -570.

[59]. C. C. Lin, K. C. Chen, and W. J. Chuang, “Motion Planning using a
Memetic Evolution Algorithm for Swarm Robots”, International
Journal of Advanced Robotic Systems, 2012, Vol. 9, pp. 1-9.

[60]. T. Balch, and R. C. Arkin, “Behavior-based Formation Control for
Multirobot Teams”, IEEE Transactions on Robotics and Automations,
1998, Vol. 14, pp. 926-939.

[61]. T. Mitchell, “Machine Learning”, McGraw Hill, 1997.
[62]. A. Ghandar, Z. Michalewicz, R. Zurbruegg, “Intelligent Decision

Support: A Fuzzy Stock Ranking System”, Aspects of Natural Language
Processing, 2009, pp. 379-410.

[63]. J. Coche, “An Evolutionary Approach to the Examination of Capital
Market Efficiency”, Evolutionary Economics, Vol. 8, pp. 357-382.

[64]. R. Luna, and K. E. Bekris, “Efficient and Complete Centralized Multi-
Robot Path Planning”, Proceedings of the Fourth International
Symposium on Combinatorial Search, 2011.

[65]. P. Bhattacharya, and M. L. Gavrilova, “Roadmap-Based Path Planning
Using the Voronoi Diagram for a Clearance-Based Shortest Path”, IEEE
Robotics and Automation Magazine, June, 2008.

[66]. R. Gayle, W. Moss, M. C. Lin, and D. Manocha, “Multi-Robot
Coordination using Generalized Social Potential Fields”, IEEE
International Conference on Robotics and Automation, 2009.

[67]. M. Garber and M. Lin, “Constraint-based Motion Planning Using
Voronoi Diagrams,” Proc. Fifth International Workshop on Algorithmic
Foundations of Robotics, 2002.

[68]. K. S. Senhilkumar, and K. K. Bharadwaj, “A Evolutionary Approach
for Multi-Robot Path Exploration Problem”, Proceedings of the
International MultiConference of Engineers and Computer Scientists,
Hong Kong, 19-21 March, 2008, Vol. 2.

[69]. S. Senhilkumar, “An Efficient Global Optimization Approach to Multi-
Robot Path Exploration Problem using Hybrid Genetic Algorithm”, 4th
International Conference on Information and Automation for
Sustainability, 2008.

[70]. X. Ma, Q. Zhang, and Y. Li, “Genetic Algorithm-based Multi-robot
Cooperative Exploration”, IEEE International Conference on Control
and Automation 2007, Vol. 00, pp. 1018-1023.

[71]. X. Ma, Q. Zhang, W. Chen, and Y. Li, “Immunity-Based Adaptive
Genetic Algorithm for Multi-robot Cooperative Exploration”, Advanced
Intelligent Computing Theories and Applications With Aspects of
Artificial Intelligence, Springer, 2007, pp. 605–616.

[72]. L. E. Parker, “Path planning and motion coordination in multiple mobile
robot teams”, in R. A. Meyers (ed.), Encyclopedia of Complexity and
System Science, Springer, Knoxville, Tennessee, USA, Chapter 13, pp.
5783–5800.

[73]. U.K. Chakraborty, “Advances in Differential Evolution”, Springer,
Heidelberg, New York, 2008.

[74]. P. J. Angeline, “Evolutionary optimization versus particle swarm
optimization: Philosophy and the performance difference,” in Proc. 7th
Int. Conf. Evol. Programming- Evol. Programming VII, LNCS, vol.
1447, 1998, pp. 84-89.

