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Abstract— Memetic algorithms are population-based meta-
heuristic search algorithms that combine the composite benefits of 
natural and cultural evolution. An adaptive memetic algorithm 
incorporates an adaptive selection of memes (units of cultural 
transmission) from a meme-pool to improve the cultural 
characteristics of the individual member of a population-based 
search algorithm.  This paper provides a novel approach to design 
an adaptive memetic algorithm by utilizing the composite benefits of 
Differential Evolution for global search and Q-learning for local 
refinement. Four variants of Differential Evolution including the 
currently best Self-Adaptive Differential Evolution algorithm have 
been used here to study the relative performance of the proposed 
adaptive memetic algorithm with respect to runtime, cost function 
evaluation and accuracy (offset in cost function from the 
theoretical optimum after termination of the algorithm). Computer 
simulations undertaken on a well-known set of 25 benchmark 
functions reveals that incorporation of Q-learning in one popular 
and one outstanding variants of Differential Evolution makes the 
corresponding algorithm more efficient in both runtime and 
accuracy. The performance of the proposed adaptive memetic 
algorithm has been studied on a real-time multi-robot path-
planning problem. Experimental results obtained for both 
simulation and real frameworks indicate that the proposed 
algorithm based path-planning scheme outperforms real coded 
Genetic Algorithm, Particle Swarm Optimization and Differential 
Evolution, particularly its currently best version with respect two 
standard metrics defined in the literature. 

Index terms- Adaptive memetic algorithm; Q-learning; 
Differential evolution; Multi-robot path-planning. 

I.  INTRODUCTION  
Coined by Dawkins in 1976, the word “meme” refers to the 
basic unit of cultural transmission or imitation [1]. Memetic 
Algorithms (MAs) are population-based meta-heuristic search 
algorithms that combine the composite benefits of natural and 
cultural evolution. Natural evolution realized by Evolutionary 
Algorithm (EA) works on the Darwinian principle of the 
struggle for existence, and aims at determining the global 
optima in a given search landscape. Traditional EA usually 
takes an excessively large time to locate a precise enough 
solution because of its inability to exploit local information. 
Cultural evolution, on the other hand, is capable of local 

refinement. MA captures the power of global search by its 
evolutionary component and local search by its cultural 
component. 

The early research on MA was confined in manual crafting 
of dedicated memes for a given problem [2].  A paradigm shift 
in research to adaptively select a meme from a pool of memes 
for application to an individual member of the population has 
been observed during the new millennium. The class of 
algorithms incorporating the adaptive selection of memes is 
referred to as Adaptive MA (AMA). AMAs “promote both 
cooperation and competition among various problem-specific 
memes and favors neighborhood structures containing high 
quality solutions” [3] to be attained at low computational costs. 
Usually, the selection of the meme for an individual member of 
the population is done based on its ability to perform local 
improvement.    

Several variants of AMAs are found in the literature [3], 
[4], [5]. The one we would use in this paper is Roulette-Choice 
strategy based Hyperheuristic AMA [4]. In the Roulette-choice 
strategy, a meme Me is selected with probability relative to the 
overall improvement. Given that g(.) is a choice function, then 

the probability of selection of Me is 


n

i
ie MgMg

1
)(/)( where n 

is the total number of memes considered. 

The AMA to be proposed requires an evolutionary 
optimization algorithm for global search and a reinforcement 
learning algorithm for local refinement. The evolutionary 
component has been realized here by Differential Evolution 
(DE) algorithm for its proven merits in global optimization 
[20], [26], [10]. Some of the attractive features of DE, 
justifying its selection in the design of AMA, include simplicity 
of its structure leading to ease of coding, very few control 
parameters and faster convergence with respect to other 
swarm/evolutionary algorithms. Temporal Difference Q-
learning (TDQL) on the other hand, has been selected as the 
reinforcement module in AMA for its wide popularity in real-
time learning.  

The particular variant of DE (DE/current-to-best/1) used in 
the proposed AMA has two parameters called scaling factors, 
which are adaptively selected from a meme pool. It is 



important to mention here that the scaling factors for all 
member of the population in a DE algorithm should not be 
equal for the best performance. A member with a good fitness 
should search in the local neighborhood, whereas a poor 
performing member should participate in the global search. A 
good member thus should have small scaling factors, while 
worse members should have relatively large scaling factors 
[10]. This is realized in the paper with the help of TDQL. 

The TDQL works on the principle of reward and penalty. It 
employs a Q-table [6] to store the reward/penalty given to an 
individual member of the population. Members are assigned 
suitable values of their scaling factors from a given meme pool 
before participation in the evolutionary process. After 
completion of the evolutionary process, members are rewarded 
based on their fitness, and the reward/penalty given to the 
member  depending on the improvement/deterioration in fitness 
measures of the trial solution is stored in the Q-table. The 
process of evolution and Q-table updating thus synergistically 
helps each other, resulting in an overall improvement in the 
performance of the AMA. 

The AMA algorithm to be proposed takes care of three 
major issues. First, it employs a Roulette-Choice function 
based hyper-heuristic scheme to adaptively select memes 
(scaling factors) for the individual members before 
participation in the DE. Second, it evaluates the total 
reward/penalty to be given to the evolved members based on 
their immediate reward measured by improvements in fitness 
because of selection of suitable scaling factors prior to 
evolution, and the future reward to be obtained from the Q-
table. This is done by one step of the Q-learning. Third, it 
stores the total reward/penalty in the Q-table by identifying the 
right location based on its row and column address. The row 
address of the Q-table is determined from the rank of the 
evolved members, computed from their individual fitness. The 
column address is determined from the selected scaling factors 
with which the individual participated in evolutionary step in 
the last iteration. 

Performance analysis of the proposed AMA realized with 
DE and TDQL (hereafter referred to as DE-TDQL) is studied 
using a set of 25 benchmark functions and compared with 
classical DE/rand/1, DE/current-to-best/1, and DE/rand/either-
or algorithms. Experiments reveal that the proposed realization 
outperforms other variants of DE both by computational 
accuracy and run time. Experiments have also been undertaken 
to compare the performance of a classical Self-adaptive 
Differential Evolution (SaDE) [28] algorithm with its extended 
version realized with the proposed adaptation mechanism of 
the scaling factors. The results confirm that the extended SaDE, 
referred to as SaDE-TDQL, outperforms the classical SaDE 
with respect to most (21 out of 25) of the benchmark functions 
used in the study. 

A case study is undertaken here to compare the relative 
performance of the proposed AMA with some of the popular 
competitive algorithms. The case study in the present context 
refers to online trajectory planning of mobile robots from given 
starting positions to fixed goal positions without hitting 
teammates and obstacles [25], [49]. There exist two alternative 
approaches, centralized and distributed, to handle the problem. 

In a centralized approach, the next position of all the robots are 
determined from their current positions, by minimizing an 
objective function concerning total path of traversal by the 
robots,  satisfying the necessary constraints on collision 
avoidance of individual robots with teammates and obstacles. 
The above problem is solved by iteratively identifying next 
positions of the robots until the goal position for all the robots 
are reached. 

In the distributed approach, the objective function with all 
the necessary constraints for the centralized problem is divided 
into n objective functions for n robots, where the i-th objective 
function refers to the distance objective and collision avoidance 
constraints for the i-th robot. The minimization problem in the 
centralized approach usually has a high degree of 
computational overhead, which in distributed environment 
boils down to relatively simplified problem of minimization of 
n objective functions for n robots. The dynamic changes in the 
current and the next positions for each robot are taken care of 
by an iterative manner as in case of centralized approach.  

There exists extensive literature on path-planning by single 
robotic agent employing graphs [50], [51], [52], neural nets 
[53], [54], fuzzy logic [55], [56] and evolutionary algorithms 
[57], [45], [58]. Recently researchers are taking keen interest to 
consider multi-robot path-planning problems for their possible 
future applications in factory environment (for transportation of 
raw materials and (partially) finished products from selected 
source stations to fixed destinations), defense and security 
systems and patient-carrying systems in hospitals/airports. 
Relatively fewer research works have been undertaken so far in 
multi-robot path-planning in comparison to its single robot 
counterpart. The existing literature on multi-robot path-
planning employs graphs [64], Voronoi diagrams [65], and 
potential field techniques [66] to handle the problem. Only in 
the last few years, traces of evolutionary algorithms in multi-
robot environment [24], [60], [68], [69] could be detected. The 
evolutionary multi-robot path-planners found in the literature 
usually consider point-mass robots [59], [60] and thus are not 
amenable for real world applications. Although shape and size 
of robots are considered in a few evolutionary path-planning 
systems, full merits of the works cannot be judged as they were 
tested in simulation environments [68], [70], [71] only.  

This paper considers an evolutionary path-planning with 
robots of definite size and circular cross-section and tested both 
in simulation and real environments. The workspace here is  
partitioned into square grids of equal size. The starting and the 
goal positions of each robot on the grid map are given, and the 
proposed AMA is used to locally plan the trajectory of motion 
of the robots with an aim to minimize the total path traversed 
by the robots without collision with obstacles. Performance 
metrics used in the existing literature [24] have been used here 
to compare the relative merits of the proposed AMA with 
respect to Genetic Algorithm (GA) based realization given in 
[49]. Experiments undertaken further to compare the relative 
performance of the AMA based path-planner with other 
swarm/evolutionary algorithm based design reveal that the 
proposed AMA based planner outperforms other realizations 
designed with Particle Swarm Optimization (PSO), DE/current-
to-best/1 and SaDE.  



The paper is divided into eight sections. Section II provides 
an overview of the classical Q-learning. Section III introduces 
the Differential Evolution algorithm. In section IV, we propose 
the AMA realized with DE and TDQL. Section V reports the 
results of performance analysis of the reported AMA. Section 
VI provides the formulation of the multi-robot motion planning 
problem and experiment with Khepera II mobile robots and 
computer simulation. Conclusions are given in section VII. 

II. AN OVERVIEW OF THE CLASSICAL Q-LEARNING 
Learning helps an agent performing better in similar situations. 
Q-learning falls under the class of reinforcement learning 
algorithms. In reinforcement learning, the learner performs an 
action causing a state-transition in the environment it resides 
and receives a reward (or penalty) for the action in attempting 
to reach a definite goal. The task of the agent here is to learn a 
control policy to select an action (from a set of possible 
actions) at a given state s in order to maximize the expected 
sum of the rewards for a sequence of state-transitions 
originating at s and leading to the goal. In the evaluation of the 
expected sum of rewards, the future rewards are discounted 
exponentially by their delay [61], and the discounted rewards 
are added to the ‘immediate reward’ obtained for the current 
state transition from s to s/. Predicting the future rewards at 
state s/, when the agent is at state s is not easy. In Q-learning, 
we formulate the expected future reward by considering only 
the discounted next reward for the best action selection at s/. 
However, because of a recursive definition of Q (total-reward) 
in Q-learning, the above formulation of expected future reward 
iteratively approximates the actual reward [7], obtained by 
summing up all the discounted future rewards with the 
immediate reward. 

Let 

},...,,{ 21 nsssS   be a set of states of an agent in a given 
environment, 

},...,,{ 21 naaaA   be a set of actions that the agent can 
select in each state Ssi  , 

),( ji asr be the immediate reward that the agent acquires by 
execution of an action ja  at state is , 

),( ji as  be the transition function that returns the next 

state sk due to selection of action ja  at state is , i.e., 
),( jik ass  , 

γ be the discounting factor used to penalize the future 
reward after a delay of k units by scaling it by a factor γk 
for positive integer k. Usually, γ lies in [0,1), and 

),( ji asQ be the total reward that the agent receives by 
executing action aj at state si. 

In Q-learning, the agent selects its next state from its current 
state by using a policy. The policy attempts to maximize the 
cumulative reward that the agent could attain in subsequent 

state-transitions from its next state. Let )(
*

sV  be the total 
cumulative reward that the agent earns at state s. this 

cumulative reward at state s is the sum of the discounted 
immediate rewards obtained by selection of best action at each 

state-transition, starting at state s. In Q-learning, )(
*

sV  is 
approximated as . asQ Max

a
),( 


 Thus ),( asQ evaluation 

becomes simplified by (1). 

)),((),(),(
*

asQVasrasQ          (by definition)                    

)),,((),( aasQMaxasr
a




                    (1) 

The classical Q-learning for deterministic state-transition is 
given below. Here, the algorithm begins with a randomly 
selected initial state. An action Aa is randomly selected, and 
the agent because of this action receives an immediate reward 
r, and moves to the new state using δ-transition rule, provided 
in a table. The Q-value of the previous state s due to selected 
action a is updated in a two-dimensional Q-table using (1). 
Now, the next state ),( ass   is considered as the initial 
state, and the steps of action selection, receiving immediate 
reward, transition to next state and Q-table updating are 
repeated forever. 

Pseudo-Code of Deterministic Q-Learning 
For each state s and action a 

Initialize ),( asQ ←0; 
Observe the current state s; 

End For; 
Repeat 

Select },...,,{ 21 naaaAa   randomly and execute it; 
Receive an immediate reward ),( asr ; 

Observe the new state ),( ass  ; 
Update the table entry ),( asQ by 

)),,((),(),( aasQMaxasrasQ
a




 ; 

s←s/; 
For Ever. 

 

Differential Q-learning is a modified version of Q learning. 
The Q-table update policy in Differential Q-learning is 
different from classical Q-learning.  It has the ability to 
remember the effect of past Q value of a particular state-action 
pair while updating the corresponding Q value. The modified Q 
update equation is given by 

))),,((),((),()1(),( aasQMaxasrasQasQ
a




 (2) 

The formula has the effect, that the Q-value ),( asQ is 
incremented, when the action a  led to a state ),( as in which 
there exists an action /a , such that the best possible Q-value 

)),,(( aasQ  in the next time step plus the achieved reward 
),( asr is greater than the current value of ).,( asQ  This is 

exactly the desired behavior, because in such a situation, the 
old estimate of ),( asQ was too pessimistic. The learning rate  
 determines to the extent the newly acquired information will 
override the old information. A setting of = 0 makes the agent 



stop learning, while =1 would make the agent consider only 
the most recent information. The discount factor  determines 
the importance of future rewards. A factor of 0 will make the 
agent "opportunist" by only considering current rewards, while 
a factor approaching 1 will make it strive for a long-term high 
reward. If the discount factor is greater than or equal to 1, 
the Q values may diverge. 

III. AN OVERVIEW OF DIFFERENTIAL EVOLUTION 
ALGORITHM 

DE is a population based meta-heuristic algorithm, which has 
earned wide publicity for its simple structure with few lines of 
codes, fewer parameters and its excellent performance in 
numerical optimization with respect to speed and accuracy 
[11], [73]. DE involves a population of NP parameter vectors, 
which at generation G is denoted 

by )}(),...,(),({ 21 GXGXGXP NPG


 .  

1. Initialization: The i-th member )(GX i


 for i=1 to NP at 

generation G=0 is selected by uniformly randomizing 

individuals in the range ],[ maxmin XX


where 

 x xxX D


 min2min1minmin ,...,, and  x xxX D


 max2max1maxmax ,...,, , 

and thus the j-th component of the i-th member at G=0 is given 
by 

)()1,0()0( minmax,min,   jjjijji xxrandxx       (3) 

where )1,0(, jirand is a uniformly distributed random number 
lying between 0 and 1. Initialize crossover rate Cr randomly in 
[0, 1]. 

2. Mutation: A donor vector )(GV i


corresponding to each 

population member or target vector )(GX i


 is created by 

randomly selecting two other members )(1 GX rand


and 

)(2 GX rand


from the current population PG , where 

))()(())()(()()( 2121 GXGXFGXGXFGXGV rrandrandibestii 





 (4) 

and F/
1 and F/

2 are two scaling factors in [0, 2]. The mutation 
operation given in (4) is referred to as DE/current-to-best/1. 
This is done for i=1 to NP. There are other mutation operations, 
details of which are available in [10], [43]. 

3. Crossover: There are two types of crossover 
(recombination) schemes- binomial and exponential [10, [11]. 
We outline both binomial and exponential crossover here, 
which we would use in AMA algorithm of section-IV. 

In case of binomial crossover, generate a trial vector 

)(GU i


for each pair of donor vector )(GV i


and target vector 

)(GX i


by the following operation 





 


otherwise Gx

jj or Crrand if Gv
Gu

ji

randijji
ji )(
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)(

,

,
,       (5) 

where )1,0(, jirand    [0, 1] is a uniformly distributed random 
number lying in [0,1] and is instantiated independently for each 
j-th component of the i-th vector. ],1[ Djrand  is a randomly 

chosen index, which ensures that  )(GU i


gets at least one 

component from )(GV i


. 

In case of exponential crossover, we randomly select an 
integer n from [1, D] and use it as a starting point in the target 
vector to represent the beginning of the crossover or exchange 
of components with the donor vector. We also select another 
integer L from [1, D], where L denotes the number of 
components, the donor vector contributes to the target. After a 

choice of n and L, we obtain the trial vector )(GU i


with 
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,

,
, Gx

Gv
Gu

ji

ji
ji

]1[

1,...,1,

D,j other all for

Lnnnj for DDD




                (6)       

where the angular brackets D denote a modulo function with 
modulus D. The integer L is selected from [1, D] by the 
following pseudo-code: 
L = 0; 
DO 
{ 
       L = L + 1; 
} WHILE (((rand (0, 1) < Cr) AND (L<D)). 

4. Selection: For a given objective 
( )f x to be minimized, the 

selection operator is described as 

))(())()(

))(())()()1(

GXfGUf( if    GX                   

GXfGUf( if    GUGX
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             (7)  

The steps 2 to 4 are repeated until a stopping criterion is 
reached.                                                                                    

IV. PROPOSED ADAPTIVE MEMETIC ALGORITHM 
The AMA to be proposed shortly includes a DE for global 
exploration and a TDQL for adaptive selection of memes. 
These two modules work in a synergistic manner to improve 
the quality of solutions for a given optimization problem. After 
each evolutionary step, the performance of the members is 
evaluated based on their fitness. High performing members are 
rewarded with positive immediate reward, whereas low 
performing members are penalized. The reward/penalty given 
to a member is stored in the Q-table using the TDQL learning 
rule. A meme pool of a parameter F is maintained to select two 
parameters (scaling Factors) F1' and F2' for the individual 
members of the DE. This is performed by a hyperheuristic 
choice-metric based adaptive selection from the meme pool. 
The process of adaptive selection of F1' and F2' from the meme 



pool, followed by one step of DE and reward/penalty updating 
in the Q-table is continued until the condition for convergence 
of the AMA is satisfied. In this paper, F1' and F2' are set equal 
to F to save complexity to avoid maintenance of two Q-tables 
for each individual scaling factors. 

The proposed AMA algorithm accesses the Q-table to 
select the scaling factors of the individual members before 
evolution, and updates the Q-table after one evolution. The row 
indices of the Q-table represent states S1, S2, …, SNP of the 
population obtained from the last iteration of the DE algorithm. 
A fitness function based rank evaluation of individual members 
is used to allocate the member to a specific state.  Thus state Sk 
includes a member of rank k. The column indices of the Q-
table correspond to uniformly quantized values of the scaling 
factors to be used in the evolutionary algorithm. Let the 
parameter under consideration be F with possible quantized 
values F1, F2, …, F10. Then Q(Si, 10Fj) represents the total 
reward given to a member at state Si for selecting F=Fj. The 
Roulette-Choice strategy is used to select a particular value of 
F from the meme pool {F1, F2, …, F10} using the Q(Si, 10Fj), 
j=1, 2, …, 10 for the individual member located at state Si. It 
must be noted that the factor 10 is used to get integer index of 
Q(.,.). 

The adaptation of Q(Si, 10Fj) is done through a 
reward/penalty mechanism as used in classical TDQL. If a 
member of the population, residing at state Si on selecting F=Fj 
moves to a new state Sk by the evolutionary algorithm, and 
such state transition causes an improvement in fitness measure, 
then Q(Si, 10Fj) is given a positive reward following the TDQL 
algorithm. If the state transition results in no improvement in 
fitness measure, then a penalty is given to the selected Q(Si, 
10Fj). The penalty is introduced by a decrease in Q-value. 
Principles used in designing the AMA are introduced below. 

1. Initialization:  DE-TDQL starts with a population of NP D-
dimensional parameter vectors representing the candidate 
solutions within the prescribed minimum and maximum 
bounds:             

                

min 1 min 2 min min

max 1 max 2 max max

[ , ,........., ]

[ , ,........., ]
D

D

X x x x

X x x x
  

  









 
Hence, we may initialize the j-th component of the i-th 

vector at generation G=0 as             
                 

)()1,0()0( minmax,min,   jjjijji xxrandxx       (8)                                                                     

where ),(rand j,i 10  is a uniformly distributed random number 
lying between 0 and 1. The entries for the Q-table are 
initialized as small values. If the maximum Q-value attainable 
is 100, then we initialize the Q-values of all cells in the Q-table 
as 1. 

2. Adaptive Selection of Parameters of the DE: The 
reward/penalty based adaptation of the Q-table helps in the 
right selection of meme F for the members of the population. 
For example, a member at state Si has a high probability of 
selecting F=Fj if Q(Si, 10Fj) is the largest among Q(Si, 10Fl) for 
l=1, 2, …, 10. It is apparent that if Q(Si, 10Fj)> Q(Si, 10Fl), for 
all l, then selection of F=Fj at state Si by the member was 

rewarded many times before in the evolution process. 
Naturally, the learning experience will guide member to select 
F=Fj with a high probability when the member is at state Si. 
The probability of selection of F=Fj from the meme pool {F1, 
F2, …, F10} is given by  

            


10

1
ii ),(S/),(S)(

l
ljj F 10 QF 10 Q FP              (9)                                                  

To maintain adaptation and learning in all Q’s in each row, 
we select a particular F from the meme pool by a random 
selection. This random selection is realized by generating a 
random number r between (0, 1) and then we determine Fj, 
such that the cumulative probability of F= F1 through Fj-1 is less 
than a randomly generated number r, and the cumulative 
probability for F= F1 through F=Fj is greater than r. 
Symbolically, we need to hold: 
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3. Differential Evolution: The DE/current-to-best/1 algorithm 
used here employs mutation, recombination and selection as 
introduced in Section III. The basic difference of the current 
realization is the selection of F1

/ and F2
/ from the meme pool 

adaptively by step 2 before invoking the DE process. 

4. Ranking of the members and state assignment: Let fi be 
the fitness of the i-th member in the last iteration. A ranking 
policy is designed to compute normalized fitness 

iff
NP

j
ji 


,/

1
, and then sort them in descending order. The r-th 

element of the sorted list has rank r, and this member is 
allocated to state Sr. This is repeated for all r=1 to NP. 

5. Reward/Penalty based Q-table updating: Let a member at 
state Si on selection of Fj moves to a new state Sk. If the fitness 
of the member increases due to transition from Si to Sk, then 
Q(Si, Fj) will be updated following (12) with a positive reward 
function:  reward(Si, 10Fj) = increase in fitness of the member,  
where 

 ))10,(max)10,((

)10,()1()10,(
/

/
FSQFSreward           

FSQFSQ

k
F

ji

jiji




      (12)                       

else Q(Si, 10Fj) will be evaluated by (12) with a negative 
reward= -K, of constant value, however,  small.  

6. Convergence: After each evolution, we repeat from step 2 
until one of the following conditions for convergence is 
satisfied. The conditions include restricting the number of 
iterations, maintaining error limits, or the both, whichever 
occurs earlier.  

 
 

and 



Pseudo Code of AMA 
I. Set the generation number 0t and randomly initialize a 

population of NP individuals 












)(),...,(),( 21 tXtXtXP NPt with

 )(),...,(),()( ,2,1, txtxtxtX Diiii 


 for  NPi ,...,2,1  and each 
individual uniformly distributed in the 

range ],[ maxmin XX


,where

 xxxX D


 min2min1minmin ,...,,  and 

 xxxX D


 max2max1maxmax ,...,,  .Set α=0.25, γ=0.8. 

Evaluate ))(( tXf i


, for target vector )(tX i


,  NPi ,...,2,1 . 

Rank each vector according ascending order of cost function f(.). 
Let the ranked population be    )0(),...,0(),0(0 21 rrrR NP , 
where )0(ri denotes a target vector of rank i in t-th generation. 
Initialize ,1)]),0(([ jrQ i ,  10,...,2,1j .where )0(ri is 
defined as above for  NPri ,1 and  10,1j denotes the index 
of uniformly quantized scaling factor F, and t denotes t-th 
iteration. 

II. While stopping criterion is not reached, do 
Begin 
Initialize ,0)]),(([ jtrreward i  NPri ,...,2,1 , 

 10,...,2,1j .  
For i=1 to NP do 
Begin 
II.a. Roulette- Choice selection:  

Randomly select a scaling factor  F ir from 0.1 to 1.0 with 
an interval of 0.1 such that the probability of selection of a 

particular jFF  is 


10

1
)),(()),(()(

l
ii ltrQjtrQjP . 

II.b. Mutation:  

Generate a donor vector  )(),...,(),()( ,2,1, tvtvtvtV Diiii 


  

corresponding to the i-th target vector )t(iX


 via the 
following mutation scheme 

));()(())()(()()( 21 tXtXFtXtXFtXtV randrandibestii



where rand1 and rand2 are mutually exclusive integers 
randomly chosen from the range [1,NP], and all are different 

from the base index i, and )(tX best


is the best individual 
vector with the best fitness (i.e., lowest cost function value) 
in the population at generation t. 

II.c. Crossover:  

Generate trial vector  )(),...,(),()( ,2,1, tutututU Diiii 


 

for the i-th target vector )(tX i


 through binomial or 

exponential crossover like classical DE as in section III. 
II.d. Selection: 

Evaluate the trial vector )(tU i


 by measuring its cost function 

)).(( tUf i


 

If ))(( tUf i


< ))(( tXf i


 

Then do 
Begin 

);()1(

));(())(()10),((

tUtX

tUftXfFtrreward

ii

iiri i








 

If ))(( tUf i


< ))(( tXf best


  

Then do 
Begin 

 );()( tUtX ibest


  

Evaluate ))(( tXf best


 and save it for future.  

End; 
End If; 

End; 
Else do 
Begin 

);()1(

;)10),((

tXtX

KFtrreward

ii

ri i





 

End; 
End If; 

Evaluate ))1(( 


tXf i  and save it for future.  
End For; 
II.e. Rank each vector according ascending order of cost function 

f(.). Let the ranked population 
be    )1(),...,1(),1(1 21  trtrtrtR NP , where 

)1( tri  denotes a target vector of rank i in (t+1)-th 
generation. 

II.f. Update Q-table: 

For i=1 to NP do 
Begin 

For Fj=0.1 to 1.0 do 
Begin 

If 0)10),((  ji Ftrreward Then 

)];10),1((max)10),(([

)10),(()1()10),((

FtrQFtrreward  
FtrQFtrQ

i
F

ji

jiji




 

Else ;)10),(()10),(( jiji FtrQFtrQ   
End If; 

End For; 
End For; 
Increase the counter value .tt 1  
End While; 

V. SIMULATION RESULTS 
In this section, we compare DE-TDQL with other four variants 
of DE, including DE/rand/1, DE/rand/either-or, DE/current-to-
best/1 [10], [11] and SaDE [28]. The comparative study 
focuses on three important aspects of all the competitor 



algorithms [43]: (1) The quality of the final solution produced 
by each algorithm, irrespective of the computational time it 
consumes; (2) The speed of the convergence measured in terms 
of the number of function evaluations (FEs) required by an 
algorithm to reach a predefined threshold value of the objective 
function; and (3) The frequency of hitting the optima (or 
success rate) measured in terms of the number of runs of an 
algorithm that converge to a threshold value within a 
predetermined number of FEs. 

A. Benchmark Functions 
The most challenging issue in validation of an evolutionary 

algorithm is to identify the right benchmark functions with 
diverse characteristics of the functions, such as uni-modality, 
multimodality and particularly location of the optima on the 
surface. Traditional benchmark functions usually have the 
global optimum at the centre, surrounded by several local 
optima along the axes. Naturally, these benchmark functions 
are inadequate to exhaustively test the performance of an 
optimization algorithm.  In order to overcome the above 
problem, a set of recommended benchmark functions [48] was 
proposed in the Congress of Evolutionary Computation 
(CEC’2005) conference. The proposed benchmarks include 
shifting of the global optimum and rotation of the local optima, 
thereby incorporating the diversity of the optimization 
problems in the traditional benchmark functions.  

Here, we test the relative performance of our algorithm 
with other variants of DE using 25 benchmark functions, 
recommended in [48], of 10, 30 and 50 dimensions. The list of 
the functions is available in [48] and cannot be given here for 
lack of space. The experiments are conducted for 25 
independent runs.  A performance analysis of the variants of 
DE for different settings of crossover rate for different 
dimensional problems has been undertaken here with 
simulation results. Maximum number of fitness evaluation 
(Max_FEs) is set at 100,000 for 10-D, 300,000 for 30-D and 
500,000 for 50-D. For lack of space, the experimental results 
for 50-D problem only with Cr=0.9 are provided in Table-I. 

B. Initial Population and Method of Initialization 
For all the contestant algorithms we used the same 

population size, which is 10 times the dimension D of the 
problem. To make the comparison fair, the populations for all 
the DE variants (over all problems tested) were initialized 
using the same random seeds. Fogel and Beyer [27] have 
shown that the popularly used symmetric initializations to 
compare evolutionary computations, can give false impressions 
of relative performance. In many comparative experiments, the 
initial population is considered to have a uniform distribution 
about the entire search space, which is usually defined to be 
symmetric about the origin [43].  In this paper, we have 
adopted an asymmetric initialization procedure following the 
works reported in [74]. 

C. Comparison of Quality of the Final Solution 
To judge the accuracy of different DE variants, we first let 

each of them run for a very long time over every benchmark 
function, until the number of FEs exceeds a given upper limit 
(which was fixed depending on the dimension of the problem). 

The mean and the standard deviation (within parentheses) of 
the best-of-run values for 25 independent runs of each of the 
algorithms are presented in Table-I for D=50 and Cr=0.9. 

Since all the algorithms start with the same initial 
population over each problem instance, we used paired t-tests 
to compare the means of the results produced by best and the 
second best algorithms (with respect to their final accuracies). 
The t-tests are quite popular among researchers in evolutionary 
computing and they are fairly robust to violations of a Gaussian 
distribution with large number of samples, say 25. In the last 
columns of Table-I, we report the statistical significance level 
of the difference of the means of best two algorithms. Note that 
here ‘+’ indicates that the t value of 49 degrees of freedom is 
significant at a 0.05 level of significance by two-tailed test, 
while ‘-’ means the difference of means is not statistically 
significant and ‘NA’ stands for Not Applicable, covering cases 
for which two or more algorithms achieve the best accuracy 
results. For all the t-tests carried in Table-I, the sample size is 
taken to be 25. The best algorithm is marked in bold. 

D. Performance Analysis 
In order to compare the speeds of different algorithms, we 

select a threshold value of the objective function for each 
benchmark problem. We run each algorithm on a function and 
stop as soon as the best fitness value determined by the 
algorithm falls below the predefined threshold. Then we note 
the number of FEs the algorithm takes. A lower number of FEs 
corresponds to a faster algorithm. Table-II reports the number 
of runs (out of 25) that managed to find the optimum solution 
(within the given tolerance) as well as the success performance 
obtained by the algorithms to converge within the prescribed 
threshold value. 

A close inspection of Table-I indicates that the performance 
of the proposed DE-TDQL algorithm has remained clearly and 
consistently superior to that of the three classical DE schemes 
(DE/rand/1, DE/rand/either-or, and DE/current-to-best-1). It is 
interesting to see that out of 25 benchmark instances, in 21 
cases DE-TDQL outperforms its nearest neighbor competitor in 
a statistically significant fashion. One may note from Table I, 
that for a few relative simpler test functions like Shifted Sphere 
(f01), Shifted Schwefel’s Problem 1.2 (f02), and Shifted 
Schwefel’s Problem 1.2 with noise in fitness (f04) most of the 
algorithms end up with almost equal accuracy. Substantial 
performance differences however, are noticed for the rest of the 
more challenging benchmark functions. In three cases, (f15, 
f18, and f25) DE/current-to-best-1 achieved best average 
accuracy beating DE-TDQL, which remained the second best 
algorithm.  

Table-II indicates that not only does DE-TDQL yield the 
most accurate results for nearly all the benchmark problems, 
but the number of runs that converge below a pre-specified cut-
off value is also greater for DE-TDQL over most of the 
benchmark problems covered here. This indicates the higher 
robustness (i.e., the ability to produce similar results over 
repeated runs on a single problem) of the algorithm as 
compared to its other three competitors.  

The latter part of the experiment attempts to improve the 
performance of the most popular variant of DE, called Self-



adaptive Differential Evolution (SaDE) [28] by incorporating 
TDQL in the algorithm for adaptation of scaling factors. SaDE 
focuses on adaptation for crossover rate and mutation strategies 
of DE. The motivation in SaDE is to solve the dilemma that 
crossover rate Cr and mutation strategies involved in DE are 
often highly problem dependant. SaDE adopts four DE 
mutation strategies and introduces a probability ‘p’ to 
determine the right one to use. The probability p is gradually 
adapted according to its learning experience. Additionally, 
crossover rate Cr is self-adapted by recording Cr values that 
make trial vectors [10] successfully enter the next generation.  

Table-III provides a comparative estimate of the relative 
performance of SaDE extended with TDQL (SaDE-TDQL) for 
scaling factor adaptation. In Table-III, the mean and the 
standard deviation (given within parenthesis) of the cost 
function of 25 independent runs for each algorithm are 
presented.  To test the statistical significance of the results, we 
use paired t tests between the two algorithms with a tolerance 
of 5% and sample size of 25. The best algorithm is marked in 
bold. It is apparent from Table-III that with a setting of learning 
period LP=50 for D=10, SaDE-TDQL outperforms all the 25 
benchmark functions, excluding three functions: f13, f14, and 
f20. SaDE-TDQL performs consistently better than SaDE over 
all the 58 benchmark instances out of 75 (considering 25 
benchmark instances for each of three settings of dimensions, 
D=10, 30, 50) as reported in Table-III, and the advantage of 
SaDE-TDQL is very prominent as well. 

To compare the relative speed of convergence and quality 
of solution (accuracy) of DE-TDQL with five optimization 
algorithms, namely DE/current-to-best/1, DE/rand/1, 
DE/rand/either-or, SaDE, SaDE-TDQL, we in Fig. 1 plotted 
the mean value of the objective function (mean best fitness)  
taken over 25 runs versus function evaluations (FEs), and note 
that DE-TDQL outperforms all other variants of DE considered 
above, while SaDE-TDQL outperforms all algorithms 
including DE-TDQL. The above observation indicates that the 
incorporation of TDQL for scaling factor adaptation in a given 
variant of DE always improves its performance in both quality 
of solution and FEs.   

A relative analysis in performance of the six algorithms 
including DE-TDQL can be performed from Fig. 2. In Fig. 2(a) 
we present a plot of accuracy (i.e., the difference between the 
best cost function obtained after convergence and the cost 
function at the theoretical optimum [48]) versus number of 
FEs, while in Fig 2(b) we provide a plot of accuracy versus 
run-time complexity.  These plots provide a visual means of 
demonstrating the performance of the algorithms with respect 
to both accuracy and FEs/runtime.  After scaling the x- and the 
y-coordinates (in order to have a uniformity in order of 
magnitude), we use the distance of a point from origin as a 
measure of its performance. The smaller the measure, the better 
is the performance of the algorithm. We now use   ‘>=’ symbol 
to represent the relative performance of two algorithms. Using 
this convention, we note from Fig.  2(a) and (b) that the 
performance of the six algorithms respectively is  

DE-TDQL >= SaDE-TDQL>= SaDE>= DE/current-to-best/1 
>= DE/rand/either-or>= DE/rand/1, and  

SaDE-TDQL>= DE-TDQL>=SaDE>=DE/current-to-best/1 >= 
DE/rand/either-or>= DE/rand/1 respectively. 

Our experience of working with DE-TDQL substantiated by 
the experimental results given in Fig. 2 indicates that the 
proposed algorithm in general offers a good level of accuracy 
at lower computational cost, measured by FEs and run-time 
complexity. It is thus apparent from the above inequalities that 
the introduction of TDQL in a particular variant of DE 
improves its relative performance with that variant. 

   As no evolutionary algorithm is full-proof, this also is equally 
applicable for DE-TDQL as well. Although in most of the 
traditional optimization problems with/without constraints and 
any extension thereof (for example, multi-objective 
optimization), the proposed DE-TDQL is expected to 
outperform most of its competitors, it has a relatively poor 
performance in dynamic optimization.  The justification to its 
failure is apparent because the scaling factors selected by 
TDQL for individual member of the population usually should 
not work under dynamic environment. For example, in stock 
prediction problem [62], [63] undertaken by evolutionary 
algorithms, DE-TDQL is expected to have worse performance 
than common variants of DE particularly in time points, where 
the parameters of the model used for prediction (say a 
polynomial time-function) have abrupt changes. The 
justification to this is apparent as the learnt scaling factors for a 
given member of the population cannot be utilized for a new 
set of model parameters. Similar situation is expected to occur 
in path-planning problem of mobile robots with noisy sensory 
measurements. We have performed some experiments with the 
above two problems, but the details of this are outside the 
purview of the present paper. 



TABLE-I 
PERFORMANCE OF THE PROPOSED DE-TDQL BASED AMA WITH OTHER VARIANTS OF DE (FOR D=50 AND CR=0.9 )

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE-II-A 
NO OF SUCCESSFUL RUNS OUT OF 25 RUNS AND SUCCESS PERFORMANCE IN PARENTHESIS (SUCCESS 

PERFORMANCE=MEAN (FES FOR SUCCESSFUL RUNS)*(# OF TOTAL RUNS) / (# OF SUCCESSFUL RUNS)) FOR f01-f13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Functi
on No. DE/rand/1 DE/rand/either-or DE/current-to-best-

1 DE-TDQL Statistical 
Significance 

f 01 7.62981e-009 
(5.76298e-009) 

1.22946e-006 
(7.71943e-007) 

0.00000e+000 
(0.00000e+000) 

0.00000e+000 
(0.00000e+000) 

NA 

f 02 1.06345e-002 
(8.7392e-003) 

1.46318e-006 
(7.19554e-007) 

0.00000e+000 
(0.00000e+000) 

0.00000e+000 
(0.00000e+000) 

NA 

f 03 1.46740e+004 
(7.5233e+003) 

5.94211e-003 
(2.37703e-003) 

9.8472e-011 
(2.94160e-011) 

0.00000e+000 
(0.00000e+000) 

+ 

f 04 9.38707e-002 
(7.25890e-002) 

79104e-005 
(1.53892e-005) 

0.00000e+000 
(0.00000e+000) 

0.00000e+000 
(0.00000e+000) 

NA 

f 05 2.42849e+002 
(5.08024e+001) 

2.85470e+000 
(1.21284e+000) 

9.5635e-005 
(1.2491e-005) 

2.27374e-012 
(1.31602e-012) 

+ 

f 06 1.11454e+002 
(2.60841e+002) 

1.64746e+002 
(2.76433e+002) 

1.35054e+000 
(5.97550e+000) 

4.78389e-001 
(1.32220e+000) 

+ 

f 13 2.82947e+000 
(4.29449e-001) 

2.90694e+000 
(5.35088e-001) 

2.15193e+000 
(4.3762e-001) 

1.18067e+000 
(2.70485e-001) 

+ 

f 15 6.53924e+002 
(1.7351e+001) 

6.80948e+002 
(9.3627e+001) 

4.28239e+002 
(7.51763e+001) 

4.29234e+002 
(1.12549e+001) 

- 

f 16 1.80043e+002 
(1.31896e+001) 

1.77648e+002 
(1.09782e+001) 

1.65812e+002 
(2.06795e+001) 

1.12813e+002 
(1.31497e+001) 

+ 

f 17 2.03029e+002 
(1.51955e+001) 

2.01405e+002 
(1.74092e+001) 

1.78097e+002 
(1.91219e+001) 

1.34020e+002 
(1.84988e+001) 

+ 

f 18 8.40003e+002 
(4.35765e+001) 

8.48183e+002 
(4.92894e+001) 

7.49505e+002 
(2.34925e+002) 

7.63328e+002 
(1.77011e+002) 

+ 

f 19 8.30678e+002 
(22685e+001) 

8.46269e+002 
(4.60059e+001) 

8.23536e+002 
(1.18894e+002) 

8.19489e+002 
(1.20251e+002) 

+ 

f 20 8.75395e+002 
(5.77017e+001) 

8.51891e+002 
(5.06452e+001) 

8.16640e+002 
(1.64708e+002) 

6.84876e+002 
(2.51560e+002) 

+ 

f 21 1.10406e+003 
(8.25569e+000) 

1.07624e+003 
(1.11391e+001) 

1.03193e+003 
(1.53154e+002) 

7.08847e+002 
(1.3880e+002) 

+ 

f 22 5.28406e+002 
(4.13118e-001) 

5.27321e+002 
(4.55182e-001) 

6.06447e+002 
(1.30617e+002) 

7.63716e+002 
(1.88575e+001) 

- 

f 23 1.10932e+003 
(5.24023e+000) 

1.09531e+003 
(9.43862e+000) 

1.02561e+003 
(1.56514e+002) 

8.88592e+002 
(2.21409e+002) 

+ 

f 24 8.4588e+002 
(2.98500e+000) 

8.0102e+002 
(8.3361e+000) 

7.5841e+002 
(1.8062e+000) 

7.5238e+002 
(4.34601e+000) 

+ 

f 25 8.3175e+002 
(4.01108e+000) 

7.9250e+002 
(3.4899e+000) 

7.6823e+002 
(2.99705e+000) 

9.9675e+002 
(5.12610e+001) 

+ 

Function 
No. Tolerance DE/rand/1 DE/rand/either-or DE/current-to-best-1 DE-TDQL 

f 01 1.00e-04 25 (1.64190e+004) 25 (2.00650e+004) 25 (4.51000e+003) 25 (2.63200e+003) 

f 02 1.00e-02 13 (2.43519e+004) 25 (1.53580e+004) 25 (5.56200e+003) 25 (2.80000e+003) 

f 03 1.00e+05 25 (1.90340e+004) 25 (6.96700e+003) 25 (2.4300e+003) 25 (1.59600e+003) 

f 04 1.00e+00 25 (1.98130e+004) 25 (1.24390e+004) 25 (4.21900e+003) 25 (2.09400e+003) 

f 05 1.00e+03 25 (1.41600e+004) 25 (6.95300e+003) 25 (2.06400e+003) 25 (7.21000e+002) 

f 06 5.00e+02 24 (1.61698e+004) 22 (1.66045e+004) 25 (2.88100e+003) 25 (1.39100e+003) 

f 07 2.00e+00 25 (7.18900e+003) 25 (6.88300e+003) 25 (1.68000e+003) 25 (9.31000e+002) 

f 08 2.04e+01 15 (1.08550e+004) 18 (1.23597e+004) 18 (9.07500e+003) 25 (8.21800e+003) 

f 09 5.00e+01 25 (4.53800e+003) 25 (9.69300e+003) 25 (1.74600e+003) 25 (5.13000e+002) 

f 10 5.00e+01 25 (9.78600e+003) 25 (9.36200e+003) 25 (2.22500e+003) 25 (8.75000e+002) 

f 11 9.20e+00 19 (9.39079e+003) 13 (7.97308e+003) 17 (9.55294e+003) 25 (6.18400e+003) 

f 12 4.00e+04 25 (4.21100e+003) 25 (7.22700e+003) 25 (5.44900e+003) 25 (2.65300e+003) 

f 13 00e+00 16 (1.25391e+004) 13 (1.71327e+004) 25 (7.53300e+003) 25 (2.15400e+003) 



TABLE-II-B 
NO OF SUCCESSFUL RUNS OUT OF 25 RUNS AND SUCCESS PERFORMANCE IN PARENTHESIS (SUCCESS 

PERFORMANCE=MEAN (FES FOR SUCCESSFUL RUNS)*(# OF TOTAL RUNS) / (# OF SUCCESSFUL RUNS)) FOR f14-f25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

TABLE-III 
COMPARISON OF PERFORMANCE OF SADE AND SADE-TDQL WITH LP=50  

 D=10 D=30 D=50 
Functi
on No. SaDE SaDE-

TDQL 
Stat. 
sig. SaDE SaDE-

TDQL 
Stat. 
sig. SaDE SaDE-

TDQL 
Stat. 
sig. 

f01 3.02e-27 
(2.13e-21) 

0.00e+00 
(0.00e+00) + 6.24e-29 

(1.65e-10) 
0.00e+00 

(0.00e+00) + 2.33e-10 
(1.65e-10) 

0.00e+00 
(0.00e+00) + 

f02 1.56e-09 
(2.52e-05) 

3.34e-16 
(0.00e+00) + 1.66e-05 

(1.12e-04) 
7.17e-10 

(5.06e-07) + 1.59e-02 
(1.12e-02) 

7.17e-07 
(5.07e-07) + 

f03 8.02e-04 
(5.36e-04) 

2.37e-13 
(1.29e-19) + 4.75e-04 

(3.35e-05) 
1.57e-10 

(7.21e-05) + 4.75e+01 
(3.35e-01) 

1.02e-04 
(7.21e-05) + 

f04 5.40e-03 
(3.17e-05) 

1.23e-05 
(0.00e+00) + 5.22e-01 

(1.92e-05) 
9.69e-02 

(0.00e+00) + 2.77e+01 
(1.95e-01) 

9.69e-02 
(6.85e-02) + 

f05 6.74e-05 
(5.05e-09) 

3.20e-10 
(4.19e-09) + 8.00e-03 

(0.00e+00) 
4.72e-07 

(3.02e-07) + 8.00e-03 
(5.60e-03) 

4.49e-08 
(3.15e-08) + 

f06 2.05e+01 
(8.69e-06) 

6.38e+00 
(3.14e-05) + 3.33e+01 

(1.93e-03) 
5.97e+00 
(4.80e-03) + 5.97e+00 

(1.02e-01) 
5.29e+00 
(7.70e-01) + 

f07 1.25e-03 
(0.00e+00) 

1.45e-05 
(0.00e+00) + 1.27e-03 

(0.00e+00) 
1.27e-03 

(0.00e+00) NA 1.27e-03 
(0.00e+00) 

1.27e-03 
(0.00e+00) NA 

f08 2.06e+01 
(1.41e-17) 

2.05e+01 
(1.44e-19) + 2.04e+01 

(7.07e-10) 
2.05e+01 
(4.10e-15) - 2.05e+01 

(7.07e-12) 
2.04e+01 
(7.07e-02) + 

f09 2.71e-10 
(0.00e+00) 

0.00e+00 
(8.62e-28) + 8.35e-08 

(5.73e-08) 
2.21e-11 

(0.00e+00) + 2.37e-09 
(1.48e-09) 

2.21e-11 
(1.56e-11) + 

f10 2.45e+01 
(1.18e-04) 

1.13e+01 
(7.07e-06) + 3.38e+01 

(3.53e-02) 
1.06e+01 

(0.00e+00) + 2.88e+01 
(3.04e+00) 

1.06e+01 
(4.94e-01) + 

f11 7.29e+00 
(1.41e-09) 

6.27e+00 
(6.64e-13) + 8.40e+00 

(1.19e-11) 
6.71e+00 
(4.10e-17) + 6.71e+00 

(4.10e-08) 
6.13e+00 
(9.89e-02) + 

f12 2.45e+03 
(4.31e-04) 

2.47e+03 
(1.26e-05) - 1.80e+03 

(3.74e-04) 
1.27e+03 
(2.82e-01) + 1.27e+03 

(8.34e-02) 
1.23e+03 
(8.76e-02) + 

f13 6.38e-01 
(3.11e-11) 

9.01e-01 
(0.00e+00) - 5.64e-01 

(1.10e-10) 
1.30e+00 
(5.20e-01) - 7.20e-01 

(5.79e-07) 
5.64e-01 

(2.38e-01) + 

f14 3.53e+00 
(1.34e+00) 

3.86e+00 
(2.12e-01) - 2.59e+00 

(1.05e-05) 
3.83e+00 
(8.76e-01) - 4.08e+00 

(3.88e-01) 
2.59e+00 
(8.98e-01) + 

f15 3.32e+00 
(4.46e-01) 

2.96e-01 
(6.25e-02) + 4.00e+00 

(0.00e+00) 
2.28e+00 

(1.21e+00) + 4.00e+00 
(4.80e-01) 

4.00e+00 
(2.61e+00) NA 

f16 1.32e+02 
(1.27e-04) 

1.11e+02 
(4.95e-04) + 1.43e+02 

(1.06e-04) 
1.10e+02 

(0.00e+00) + 1.28e+02 
(2.82e+00) 

1.10e+02 
(7.07e-01) + 

f17 1.85e+02 
(0.00e+00) 

1.57e+02 
(6.36e-07) + 1.73e+02 

(2.40e-01) 
1.53e+02 

(0.00e+00) + 2.07e+02 
(1.55e+01) 

1.53e+02 
(2.82e+00) + 

f18 8.00e+02 
(1.63e-04) 

3.28e+02 
(1.97e-05) + 3.98e+02 

(6.36e-07) 
3.89e+02 
(5.79e-02) + 3.89e+02 

(2.90e-03) 
3.07e+02 
(1.48e-01) + 

f19 5.31e+02 
(2.00e-03) 

3.00e+02 
(2.62e-06) + 8.00e+02 

(2.54e-02) 
4.40e+02 
(8.83e-02) + 4.40e+02 

(6.43e+00) 
3.15e+02 

(1.06e+00) + 

f20 8.00e+02 
(2.00e+01) 

3.00e+02 
(2.02e-19) + 8.00e+02 

(0.00e+00) 
3.74e+02 

(2.82e+00) + 8.00e+02 
(0.00e+00) 

3.70e+02 
(4.94e-01) + 

f21 5.00e+02 
(0.00e+00) 

5.00e+02 
(0.00e+00) NA 8.00e+02 

(0.00e+00) 
5.00e+02 

(0.00e+00) + 8.00e+02 
(2.12e+01) 

5.00e+02 
(0.00e+00) + 

f22 7.68e+02 
(0.00e+00) 

8.20e+02 
(2.40e+00) - 7.82e+02 

(1.41e+01) 
7.62e+02 

(1.90e+01) + 7.62e+02 
(4.24e+00) 

7.89e+02 
(2.19e+01) - 

f23 9.29e+02 
(1.47e-03) 

5.59e+02 
(0.00e+00) + 1.18e+03 

(0.00e+00) 
5.59e+02 

(0.00e+00) + 1.18e+03 
(1.77e-02) 

5.59e+02 
(0.00e+00) + 

f24 2.00e+02 
(0.00e+00) 

2.00e+02 
(2.33e-17) NA 7.54e+02 

(3.91e-05) 
2.00e+02 

(0.00e+00) + 2.00e+02 
(0.00e+00) 

2.00e+02 
(0.00e+00) NA 

f25 2.00e+02 
(1.13e-07) 

2.00e+02 
(0.00e+00) NA 2.00e+02 

(0.00e+00) 
2.00e+02 

(0.00e+00) NA 2.00e+02 
(0.00e+00) 

2.00e+02 
(0.00e+00) NA 

 
 
 
 

Function 
No. Tolerance DE/rand/1 DE/rand/either-or DE/current-to-best-1 DE-TDQL 

f 14 4.15e+00 14 (1.30357e+004) 23 (8.75217e+003) 25 (6.40800e+003) 25 (7.38000e+002) 

f 15 7.08e+02 25 (4.74000e+003) 19 (1.01908e+004) 25 (5.7000e+002) 25 (1.66000e+002) 

f 16 2.24e+02 25 (6.45000e+003) 25 (7.20100e+003) 25 (5.8800e+003) 25 (1.28000e+003) 

f 17 2.50e+02 25 (6.91100e+003) 25 (8.22500e+003) 25 (5.8900e+003) 25 (1.28400e+003) 

f 18 8.50e+02 21 (5.96667e+003) 19 (2.53158e+003) 18 (1.01111e+003) 22 (2.36250e+003) 

f 19 8.50e+02 23 (5.43913e+003) 19 (2.86184e+003) 20 (8.66250e+002) 16 (1.54688e+003) 

f 20 8.75e+02 13 (4.81538e+003) 18 (2.19444e+003) 17 (6.85294e+002) 20 (2.17250e+003) 

f 21 1.10e+03 6 (1.96667e+004) 24 (1.77708e+004) 25 (3.8100e+003) 25 (1.14200e+003) 

f 22 8.00e+02 25 (5.45000e+002) 25 (4.46000e+002) 20 (5.8500e+003) 22 (8.60227e+002) 

f 23 1.15e+03 25 (4.6900e+003) 25 (6.5100e+003) 25 (1.02500e+003) 24 (8.35417e+002) 

f 24 4.10e+02 25 (4.54500e+003) 25 (1.0000e+003) 25 (8.86000e+002) 25 (5.40000e+002) 

f 25 4.50e+02 25 (1.64800e+003) 25 (1.49400e+003) 25 (9.4000e+002) 20 (7.3750e +002) 
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Fig. 1: Relative performance in mean best fitness function versus function evaluation for DE-TDQL and SaDE-TDQL over other 

competitive algorithms: SaDE, DE, PSO, DE for f04, f07, f15, f17, f19, f20, f22 and f25 
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Fig. 2(a): Relative performance in accuracy versus function evaluation for DE-TDQL and SaDE-TDQL over other competitive 

algorithms: SaDE, DE, PSO, DE for f14, f19 and f25 with Max_FEs=106
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Fig. 2(b): Relative performance in accuracy versus average run-time for DE-TDQL and SaDE-TDQL over other competitive 

algorithms: SaDE, DE, PSO, DE for f14, f19 and f25 with total no. of runs=25 and Max_FEs=106 
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VI. A CASE STUDY IN MULTI-ROBOT PATH-PLANNING  
Multi-robot path-planning refers to determining the trajectory 
of motion of robots between pre-defined starting and goal 
positions in a given world map. Usually, one or more 
optimality criteria are imposed in path-planning problems. The 
criteria include minimization of the total path/time of traversal 
or energy or their combinations. This paper provides a solution 
to the multi-robot path-planning problem using evolutionary 
algorithm. Here, we formulated multi-robot path-planning as an 
optimization problem with an objective to minimize the total 
traversed path by the robots without hitting 
obstacles/teammates. The problem has been solved here using 
the proposed DE-TDQL based AMA. Both centralized and 
distributed approaches to multi-robot path-planning are found 
in the literature [24], [25], [49]. Here, we attempt to solve the 
problem using distributed approach, particularly for its good 
time-efficiency [72]. Computer simulations are used to study 
the relative performance of the proposed realization using DE-
TDQL with respect to other well-known optimization 
algorithms. 

A. Formulation 
In the present context, we consider a 2-dimensional work-
space, partitioned into equal sized square grids containing two 
or more mobile robot and obstacles with linear boundary. The 
robots are considered to have circular geometry with radius less 
than half of a side of the square grids. Grids are referred to by 
their distinct integer addresses. The obstacles are represented 
by the coordinates of their vertices. They can be of arbitrary 
shape and need not be encapsulated within grids. The starting 
and the goal coordinates for each robot are fixed in the work-
space, and these coordinates need not necessarily fall in a grid.  
A potential robot path between a given starting and a goal 
position is constructed by joining two or more line segments. 
The line segments pass through a number of junctions, called 
intermediate nodes. The intermediate nodes are symbolized by 
their grid numbers. A robot path is considered to be feasible, if 
none of the line segments intersect any obstacles. While 
planning a trajectory for a robot, other mobile robots are 
considered as moving obstacles. The path-planning problem for 
each robot is executed in steps until all robots reach their 
respective (predefined) goal positions. The formulation 
considers the evaluation of the next position of the robots from 
their current position. 

Here, we represent a solution by a structure containing n 
fields, where the first (S) and the last fields (T) indicate the 
starting and the goal positions of the mobile robot. The second 
onwards successive (n-2) fields represent the intermediate 
nodes. Fig. 4 gives a pictorial representation of a solution 
encoding a possible path for a mobile robot within the 
workspace as shown in Fig. 3.  

We now propose an evaluation method to first check the 
feasibility of a path, by detecting intersection between its 
constituent line segments and obstacles/teammates in the 
robots’ world map. If all the line segments in a path are found 
to be free from intersection, the path length, defined by sum of 
the length of the line segments in the planned path, is assigned 
as its cost indicating the quality of the solution. Otherwise, the 

evaluation method assigns the cost by estimating the ‘depths’ 
of intersection of the constituent lines lying on the path with 
obstacles. The cost thus measured is an indirect measure of the 
difficulty faced by the path to escape from obstacles. A cost 
function [49] for a solution representative of a possible path for 
the i-th robot is given in (13).  

 
 Fig. 3: The theoretical and planned paths denoted by solid and dashed line 
between a given starting and a goal position 

 

Starting Point      Intermediate nodes represented by grid numbers   Target Point 

Fig. 4: An example of solution in the DE-TDQL-based multi-robot motion 
planning 

  


N

j
jji CdF

1
  (13)                                               

where N is the number of line segments in a path, dj is the 
Euclidean distance of the two successive nodes forming the j-th 
line segment. The factor C is used to maintain uniformity in 
order of magnitude of the two summations. βj is the coefficient 
denoting depth of collision, which is defined as 







 






M

1k
k

j obstacles with intersectssegment  lineth j if   

feasible issegment  lineth j if        0

(14)                      
Here, M is the number of obstacles the j-th line segment 
intersects, and αk is determined by measuring the depth of an 
intersecting line-segment with an obstacle k. αk is defined as 
the shortest moving distance for escaping the intersected 
obstacle [49].  The cost function Fi is to be minimized to 
determine the next position of robot i. The minimization of Fi is 
to be performed for all i in parallel. This has been taken care of 
by n DE-TDQLs each engaged to minimize one Fi for i =1 to n, 
where n is number of robots. 

   We now illustrate the measurement of αk and βj in Fig. 5.  
In Fig. 5(a), αk is treated as the shortest distance to move the 
line out of the obstacle k. Fig. 5(d) elucidates a special 
example, where the line segment intersects two obstacles. It is 
evident that it is very difficult to determine the amount of shift 
of the line segment that will make it possible to move away 
from both obstacles. So the sum of α1 and α2 is used for 
calculation of βj. For other complex configurations, the reader 
may consult the paper by Yang [49]. 
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(a) βj= αk           (b)   βj= α1+ α2 

Fig. 5: Definition of the coefficient βj 

B. Experiments 
The experiments were undertaken in two phases, first by 
computer simulation on a Pentium machine, and later on a real 
platform using two Khepera II mobile robots.  

B.1. Experiments in Simulated Environment 
Experiments were performed with n (2≤ n≤14) similar soft-bots 
of circular cross section on a Pentium machine. The radius of 
robot was set to 6 pixels. For each robot the starting and the 
goal points are pre-defined prior to initiating the experiment. 
The experiments were performed with 2, 4, 6, 8 and 10 
differently shaped obstacles. While performing the 
experiments, old obstacles were retained and new obstacles 
were added. Extensive experiments were performed with 50 
world maps of diverse configurations.  One of our experimental 
world-maps with 2 dark obstacles, given starting and goal 
positions of 6 circular soft-bots, and theoretical (straight line 
paths) and planned trajectories (curved paths) obtained by 
minimization of (13) in each step of planning using DE-TDQL 
is shown in Fig. 6.  

 
Fig. 6: The theoretical and planned paths denoted by solid and dashed line 
between given starting and goal positions for 6 robots and 2 obstacles 

B.2. Experiments in Real Environment on Khepera- II 
Platform 

The experiment was undertaken with a world map of 8  6 
grids of equal size and two Khepera-II mobile robots (diameter 
of 7 cm). Each robot is equipped with 8 infrared sensors, two 
motor driven side wheels and one caster wheel.  The range 
sensors are positioned at fixed angles and have limited range 
detection capabilities. The sensors are numbered between 0 and 
7 with the leftmost sensor, designated by 0, and the rightmost 
by 7. The robot represents measured range data in the scale: [0, 
1023]. When an obstacle is away from the sensor by more than 
5cm, it is represented by zero. When an obstacle is 
approximately 2 cm away, it is represented by 1023. The 

onboard Microprocessor includes a flash memory of 512 KB, 
and a Motorola 68331, 25MHz processor.  

The robots were controlled by two Pentium-IV personal 
computers (PCs) through wired connections. The robots were 
used to sense obstacles around them in the world map and turn 
wheels by motor firing for controlled movement in prescribed 
directions. A control program that determines the next position 
of a robot from its current position using DE-TDQL based 
optimization algorithm is run on the attached Pentium machine.  
The necessary commands for motor movements are transferred 
to the robots from their connected computers. One sample run 
of path-planning in the real environment is given in Fig. 7. It is 
observed from Fig. 7 that the robots follow the shortest paths 
avoiding collision with obstacles. The experiment was 
performed on 10 different world maps of different grid counts, 
each with five different obstacle-maps, and in all the 50 
environments the robots could successfully trace the shortest 
paths. 

 
                     DE-TDQL 

                     SaDE 

                     DE 

                     PSO 

                     GA 

Fig. 7: Trajectories planned by execution of different algorithms in Khepera 
environment with five obstacles 

C. Performance Analysis 
To determine a quantitative measure of the relative 
performance of different algorithms, we use two metrics 
suggested in [24][26]. We here reproduce below the 
definitions of the two performance metrics for the sake of 
completeness of the paper.   

Average total path deviation (ATPD) [24]: Let Pik be a 
path from the starting point Si to the goal point Gi generated by 
the program for robot Ri in the k-th run. If Pi1, Pi2,…, Pik are the 
paths generated over k runs then the average path traversed 

(APT) by robot Ri is given by 


k

j
ij kP

1
/  and the average path 

deviation for this robot is evaluated by measuring the 
difference between APT and the ideal shortest path between Si 



to Gi (with minimum threshold spacing with each obstacle). 
The threshold in our experiment was considered to be one 
pixel. If the ideal path for robot Ri obtained geometrically is Pi-

ideal, then the Average Path Deviation is given by 






k

j
ijideali kPP

1
/ Therefore for n robots in the workspace the 

Average Total Path Deviation (ATPD) is  
 



n

i

k

j
ijideali kPP

1 1
/ . 

Average Uncovered Target Distance [26]: Given a goal 
position Gi and the current position Ci of a robot on a 2-
dimensional workspace, where Gi and Ci are 2-dimensional 
vectors, the uncovered distance of robot i is || G i -  Ci  ||, where 
||.|| denotes Euclidean norm. For n robots, uncovered target 
distance (UTD) is the sum of ii CG   i.e., 

.
1
 


n

i
ii CGUTD Now, for k runs of the program, we 

evaluate the average of UTDs and call it the Average 
Uncovered Target Distance (AUTD). In all our experiments, 
we set k =10.  

   
     (a)                                                             (b) 
 

   
(c) (d) 

 

 
(e) 

Fig.  8: Final configuration of the world map after execution of the (a) DE-
TDQL- (b) SaDE- (c) DE- (d) PSO- and (e) GA- based simulations with 6 
robots and 2 obstacles requiring 23, 25, 29, 32 and 34 steps respectively. 

The performance analysis was undertaken on simulation 
environment. First we plot APT for n robots, called Average 
Total Path Traversed (ATPT) by varying n from 2 to 10 by 
generating paths using 5 different algorithms, including real 
coded GA, PSO, DE/current-to-best/1, SaDE and DE-TDQL. It 
is noteworthy from Fig. 9 that DE-TDQL has the least ATPT in 
comparison to other algorithms irrespective to the number of 
robots. 

The second study on performance analysis was undertaken 
by plotting ATPD by generating paths by five different 
evolutionary algorithms (as used in APT) with number of 

robots as variable. Fig. 10 provides the results of ATPD 
computation when number of robots varies between 2 to 10. 
Here too we observe that DE-TDQL outperforms the remaining 
four algorithms as ATPD remains the smallest for DE-TDQL 
irrespective to the no. of robots.  

The last analysis on performance was undertaken by 
comparing AUTD over the no. of planning steps. Fig. 11 
provides a plot of AUTD when the paths are planned using the 
five algorithms referred to above with number of obstacles = 5 
and no. of robots=5. It is apparent from Fig. 11 that AUTD 
returns the smallest value for DE-TDQL irrespective of number 
of planning steps. 

In brief, the proposed DE-TDQL based path-planning 
outperforms all the four other algorithms with respect to all 
three popular metrics. 
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Fig. 9: Average total path traversed vs. number of robots with number of 

obstacles= 5 (constant) 

2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

Number of Robots

A
ve

ra
ge

 T
ot

al
 P

at
h 

D
ev

ia
tio

n

GA
PSO
DE
SaDE
DE-TDQL

 
Fig. 10: Average total path deviation vs. number of robots with number of 

obstacles= 5 (constant) 
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Fig. 11: Average uncovered target distance vs. number of steps with number of 

robots=5 (constant) and obstacles= 5 (constant) 

Fig. 7 provides experimentally obtained trajectories planned 
by two mobile robots using five different algorithms, including 
DE-TDQL, SaDE, DE/current-to-best/1, PSO and GA. Results 
of the experiments performed are summarized in Table-IV. 
Three performance metrics, namely 1) total number of steps 
taken to reach the goal, 2) APT, and 3) ATPD have been used 
here too to determine the relative merits of DE-TDQL over 
other algorithms. Table-IV confirms that DE-TDQL 
outperforms the remaining four algorithms with respect to all 
the three metrics. 

TABLE-IV 
COMPARISON OF NUMBER OF STEPS, AVERAGE PATH TRAVERSED AND 

AVERAGE TOTAL PATH DEVIATION BY THE ROBOTS 

 
Algorithms 

Total 
Number 
of Steps 

ATPT 

(inch.) 

ATPD 

(inch.) 

DE-TDQL 10 42.2  7.2 

SaDE 12 44.9 9.9 

DE 17 46.4 11.4 

PSO 19 47.1 12.1 

GA 23 50.0 15.0 

 

VII. CONCLUSION 
The paper introduced a new technique for efficiently 
employing DE and Q-learning together to develop an adaptive 
memetic algorithm.  A relative comparison of the proposed 
technique with four variants of DE algorithms, including 
SaDE (the currently known best-performing DE) envisages 
that the proposed DE-TDQL algorithm outperforms all its 
competitors with respect to accuracy and runtime required for 
convergence jointly. A set of 25 CEC 2005 benchmark 
functions proposed by Suganthan has been used to arrive at the 
above conclusions.  

Besides the above, one more fundamental claim of this 
paper is that if TDQL is used to select scaling factors of any 
variants of DE, the modified algorithm would outperform its 
fundamental counterpart both in accuracy and convergence 
time. For example, SaDE-TDQL has shown to have better 

performance in accuracy and runtime jointly than SaDE, its 
fundamental constituent. The basis of the above conclusion 
follows directly from a measure of distance between the 
coordinates of each algorithm and the origin in the accuracy 
versus runtime space. The experimental results thus strongly 
claim that SaDE-TDQL can significantly enhance the 
performance of SaDE due to the adaptation of scaling factors 
of SaDE by the use of TDQL. 

A case study on multi-robot path- planning problem has 
been undertaken to demonstrate the relative merits of using the 
proposed DE-TDQL based AMA over other algorithms. A 
formulation of the objective function for the problem has been 
given following [49], and the DE-TDQL algorithm is 
employed to minimize the objective function in order to 
determine the next position of all the robots from their current 
positions in the given world map. The experiments undertaken 
reveal that the DE-TDQL based AMA here too outperforms 
classical DE and PSO, real coded GA and SaDE algorithms 
with respect to two parameters AUTD and ATPD. The 
experiments performed with Khepera-II mobile robots also 
indicate that DE-TDQL based AMA outperforms other 
realizations in real environment, thereby justifying the efficacy 
of the proposed algorithm.  
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