HW\#7 FIR Filter

\#1 Square Wave

(a) The Fourier Series is defined as below:

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{+\infty} c_{k} e^{+j\left(2 \pi / T_{0}\right) k t} \\
& c_{k}=\frac{1}{T_{o}} \int_{0}^{T_{0}} x(t) e^{-j\left(2 \pi / T_{0}\right) k t} d t
\end{aligned}
$$

Given a square wave:

$$
\begin{aligned}
s(t)=1 & \text { for } \quad 0 \leq t \leq 0.5 T_{0} \\
0 & \text { for } \quad 0.5 T_{0} \leq t \leq T_{0}
\end{aligned}
$$

Show the FS coefficients are given by

$$
\begin{array}{cl}
c_{k}=\frac{1}{j \pi k} & k= \pm 1, \pm 3, \pm 5, \cdots \\
0 & k= \pm 2, \pm 4, \pm 6, \cdots \\
\frac{1}{2} & k=0
\end{array}
$$

Hint:

$$
\begin{aligned}
& c_{k}=\frac{1}{T_{0}} \int_{0}^{s T_{0}} 1 \cdot e^{-j\left(2 \pi / T_{0}\right) k t} d t \\
& e^{-j \pi}=-1 \quad e^{-j \pi k}=(-1)^{k}
\end{aligned}
$$

(b) Draw the spectrum plot $\left(\left|c_{k}\right|^{2}, k f_{0}\right)$, where $f_{0}=1 / T_{0}$. (matlab / octave)
(c) Let $\quad x_{N}(t)=\sum_{k=-N}^{+N} c_{k} e^{+j\left(2 \pi / T_{0}\right) k t}$.

Plot $x_{5}(t)=\sum_{k=-5}^{+5} c_{k} e^{+j\left(2 \pi / T_{0}\right) k t}$, and $\quad x_{5}(t)+n(t)$, where $n(t) \quad$ is AWGN (additive white Gaussian noise) with a certain SNR. (matlab / octave)
(d) Let $x[n]$ denote the properly sampled signal of $x_{5}(t)+n(t)$, and $\quad h[n]=\frac{1}{(M+1)} \sum_{k=0}^{M} \delta[n-k] \quad(M=10)$,
show that the convolution result $y[n]=x[n] * h[n]$ is equal to

$$
y[n]=\frac{1}{11} \sum_{k=0}^{10} x[n-k] .
$$

And using matlab / octave, compute and plot the $y[n], x[n], h[n]$.
(i) $y[n]=\frac{1}{11} \sum_{k=0}^{10} x[n-k]$
(ii) ones (11, 1) / 11 and conv (hh, xx)

