ENGINEERING EXPERIENCE 4

MEASUREMENTS AND CALCULATIONS REPORT

Team 11 PHOENIX

Weiwei Xu
Bram Govaerts
Jonas De Beckker
Michiel Wante
Spaas Maxime
Song Yan
Tao Yang
Xiao Zhou

Solar panel

The solar panel is the energy source of the solar car. Having a basic knowledge of the solar panel help us make a better solar car. We can not measure the behavior of the solar panel under racing condition, so we just calculate the m value of it to predict how it will perform.

We connected a voltmeter ,an ammeter and a variable resistance to the solar panel. We placed the solar against a fixed lamp and adjusted the resistance.

Measurements we kept

	Measur	Transformed to the expected sun rays	
	U [V]	I [A]	0,88/I [A]
1	0,42	0,32	0,9387
2	2,7	0,32	0,9387
3	4,7	0,32	0,9387
4	6,17	0,32	0,9387
5	7,68	0,26	0,7627
6	7,96	0,22	0,6453
7	8,20	0,16	0,4693
8	8,27	0,13	0,3813
9	8,30	0,11	0,3227
10	8,32	0,10	0,2933
11	8,32	0,09	0,2640
12	8,33	0,08	0,2347
13	8,34	0,07	0,2053
14	8,35	0,06	0,1760

We calculated the m value with given formula and known data.

$$m = \frac{1}{\frac{N*U_r*\ln(\frac{I_{sc}-I}{I_s}+1)}{U}}$$

So, we got a list of the m value.

Constants

What	Value	S.I.
Is	0,0000001	A/m^2
Ur	0,0257	V
N	15 Cells in series	
Isc = Iph	0,94	Α

The average m value we get is 1.256

Calculation "m" value

	m	control
1	0,115	0,9399994
2	0,737	0,9399994
3	1,284	0,9399994
4	1,685	0,9399994
5	1,385	0,9399996
6	1,386	0,9399997
7	1,384	0,9399998
8	1,381	0,9399999
9	1,377	0,9399999
10	1,376	0,9399999
11	1,372	0,9399999
12	1,370	0,9399999
13	1,368	0,9399999
14	1,367	0,9400000
Average	1,256	0,9399997

Gear Ratio

The solar cell supplies current and voltage

$$I = Isc - Is(e^{\frac{U}{m.N.Ur}} - 1)$$

So if we want the max power:

P=U*I

When U=7.55V

I=0.93A

Pmax=7w

 $\mathbf{U} \cdot \mathbf{I} \cdot \mathbf{\eta} = \mathbf{F}_{\text{wheel}} \cdot \mathbf{V}_{\text{A/B}}$

(calculated by maple 14)

Therefore:

$$U \cdot I \cdot \eta = F_{\text{wheel}} \cdot V_{\text{A/B}}$$

$$T_{\text{wheel}} = 8.55 \cdot 70\% \cdot I \cdot 10^{-3} \cdot n$$
 (n is the gear ratio)

$$T_{\text{wheel}} = F_{\text{wheel}} \cdot R_{\text{wheel}}$$

$$S = \frac{1}{2} a \cdot t^2 = \frac{1}{2} V_{A/B} \cdot t_{A/B}$$
 (S = 6 m, at point A/B)

$$F \cdot t = m \cdot \Delta V \Rightarrow (F_{wheel} - F_{rolling}) \cdot t_{A/B} = m \cdot V_{A/B}$$

Estimate the weight of the car (m) and the radius of the wheel (R_{wheel}) .

Taking m = 0.75kg, $R_{wheel} = 0.04$ m, $F_{rolling}$ can be calculated by

$$Fr = C_{rr} \times N$$

N is the normal force

 $C_{rr} = 0.015$

$$U = 7.56V$$
; $I = 0.93A$; $\eta = 70\%$; $S = 6m$

So we calculate it by maple14:

$$eq1 := 7 \cdot 0.7 = Fwheel \cdot Vab$$

$$4.9 = Fwheel Vab$$

$$eq2 := Twheel = 5.985 \cdot 0.001 \cdot n \cdot 0.9272$$

$$Twheel = 0.0055492920 n$$

$$eq5 := Twheel = Fwheel \cdot 0.04$$

$$Twheel = 0.04 Fwheel$$

$$eq3 := 6 = \frac{1}{2} \cdot Vab \cdot t$$

$$6 = \frac{1}{2} Vab t$$

$$eq4 := (Fwheel - 0.1104) \cdot t = 0.75 \cdot Vab$$

$$(Fwheel - 0.1104) t = 0.75 Vab$$

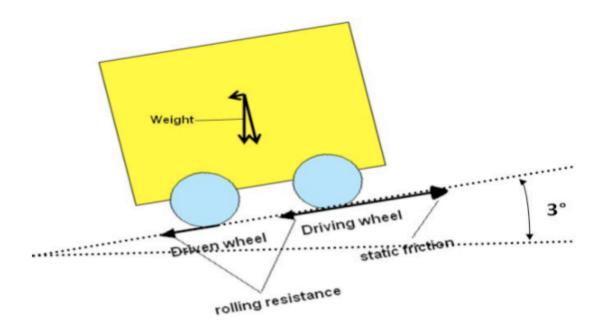
simplify(solve({ eq1, eq2, eq3, eq4, eq5}, [Vab, n, t, Fwheel, Twheel]))

$$\begin{split} & [[\mathit{Vab} = 4.142427119, n = 8.526359055, t = 2.896852414, \mathit{Fwheel} \\ & = 1.182881402, \mathit{Twheel} = 0.04731525609], [\mathit{Vab} = -2.071213560 \\ & - 3.8257256601, n = -3.865290932 + 7.1395547961, t = \\ & -1.313242534 + 2.4256821011, \mathit{Fwheel} = -0.5362407012 \\ & + 0.99048685791, \mathit{Twheel} = -0.02144962805 \\ & + 0.039619474321], [\mathit{Vab} = -2.071213560 + 3.8257256601, n = \\ & -3.865290932 - 7.1395547961, t = -1.313242534 \\ & - 2.4256821011, \mathit{Fwheel} = -0.5362407012 - 0.99048685791, \\ \mathit{Twheel} = -0.02144962805 - 0.039619474321] \end{split}$$

Now we get :

Vmax=4.142m/s

N=8.53


Fwheel=1.183N

Twheel=0.0473.m

When the car gets max velocity, it will take t.

t=2.897s

When our car arrives at the slope:

On the slope

Total resistant force:

Rolling resistance; part of the weight;

Air resistance(neglected)

 $F_r = F_{rolling} + mg \cdot sin(3^\circ) \approx 0.4953N$

Thus, On the slope F_{wheel} > F_r

 $F_{\text{wheel}} = F_r = 0.4953N \rightarrow T_{\text{wheel}}$, gear ratio i is known

→ I (current) → solar panel U-I graph → U

$$\rightarrow$$
 U·I· η = F_{wheel} · V \rightarrow V_{slope} = 4.77 m/s

 $V_{final} \approx 3.66 \text{ m/s}$

In this case, $V_{A/B}$ and V_{final} are almost equal

So
$$t_{slope} < 8m/V_{A/B} \approx 1.813s$$

$$t_{total} \approx t_{A/B} + t_{slope} = 2.897 + 1.813 = 4.71s$$