Signals & Variables | Copyright (c) 2012 Young W. Lim. | |---| | Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". | Please send corrections (or suggestions) to youngwlim@hotmail.com. | | This document was produced by using OpenOffice and Octave. | | | | | | | | | #### **Concurrent Statement** - Block Statement - Process Statement - Component Statement - Generate Statement - Concurrent Signal Assignment - Concurrent Assertion - Concurrent Procedure Call - Architecture Body - Block Statement - Generate Statement - Conditional Signal Assignment - Selected Signal Assignemnt #### Sequential Statement - Wait Statement - Assertion Statement - Report Statement - Generate Statement - Signal Assignment - Variable Assignment - Procedure Call - If - Case - Loop - Next - Exit - Return - Null - Case Statement - If Statement - Loop Statement - Process Statement - Subprogram Body - Sequential Signal Assignment - Conditional Signal Assignment - Selected Signal Assignment # Conditional Signal Assignment ``` Z \Leftarrow A \text{ or } B \quad [\text{ after } 1 \text{ } ns \text{ }] \quad \text{when } S0 = '1' \text{ else} A \text{ or } C \quad [\text{ after } 2 \text{ } ns \text{ }] \quad \text{when } S1 = '1' \text{ else} A \text{ or } D \quad [\text{ after } 3 \text{ } ns \text{ }] ; Z \Leftarrow A \text{ or } B \quad [\text{ after } 1 \text{ } ns \text{ }] \quad \text{when } S0 = '1' \text{ else} A \text{ or } C \quad [\text{ after } 2 \text{ } ns \text{ }] ; Z \Leftarrow A \text{ or } B \quad [\text{ after } 1 \text{ } ns \text{ }] \quad \text{when } S0 = '1' ; Z \Leftarrow A \text{ or } B \quad [\text{ after } 1 \text{ } ns \text{ }] \quad \text{when } S0 = '1' ; ``` - Concurrent Signal Assignment - Conditional Signal Assignment - Selected Signal Assignment #### Selected Signal Assignment Conditional Signal Assignment ``` Z \leftarrow A \text{ or } B [after 1 ns] when SEL = "00" else A or C [after 2 ns] when SEL = "01" else A or D [after 2 ns] when SEL = "10" else A or E [after 3 ns] when SEL = "11" else A or F [after 4 ns]; ``` Selected Signal Assignment ``` with SEL select Z <= A or B [after 1 ns] when "00", A or C [after 2 ns] when "01", A or D [after 3 ns] when "10", A or E [after 4 ns] when "11", A or F [after 5 ns] when others;</pre> ``` ### Concurrent vs Sequential #### **Order of Statements** #### Simulation of parallel activities #### The order of statements is important #### Simulation Time #### **Evaluation** Simulation Time is assumed to take no time Unit: ms, ns, ps, ... Unitless Delta Δ Real Delay - used for a simulator to mimic parallel activities simulator $$1\,ms\,=\,1000\,ns$$ $$1 ps \neq n \cdot \Delta$$ $1 \, ns = 1000 \, ps$ no integer n that make n delta equal to 1 ps. $$n \cdot \Delta = \mathbf{0} \, ps = \mathbf{0} \, ns \cdots$$ Zero Delay Zero Delay Assignment $$X1 \leq A \text{ or } B$$; $X1 \leq A \text{ or } B \text{ after } 0 \text{ ns};$ # Zero Delay Assignment The exact no of delta is determined by the simulator and the context ### Non-Zero Delay Assignment The exact no of delta is determined by the simulator and the context #### Inertial Delay & Transport Delay # Variable Assignment (1) ### Variable Assignment (2) The variable assignment has nothing to do with time. It executes immediately. ### Multiple Assignments to the Same Target #### **Resolution Function** ``` architecture arch of entity ent is FUNCTION w and (drivers : bit vector) RETURN bit is BEGIN Multiple Concurrent Assignment is <u>legal</u> only when a <u>resolution</u> <u>function</u> is defined. END w and; (wire-and, wire-or) SIGNAL X1: w_and bit; begin \leftarrow A or B; X1 \leq w_and(A \text{ or } B, C \text{ or } D); \leftarrow C or D; process (A, B, C, D, E, F) begin end process; end ``` ### **Inertial Delay** #### **Multiple Concurrent Assignments** ### **Transport Delay** #### **Multiple Concurrent Assignments** ``` X2 <= transport '1' after 5 ns; X2 <= transport '0' after 3 ns; process (...) begin end process;</pre> ``` ``` X2 <= transport '1' after 3 ns; X2 <= transport '0' after 5 ns; process (...) begin end process;</pre> ``` # Inertial Delay (1) ``` process (...) begin X2 <= '1' after 5 ns; X2 <= '0' after 3 ns; end process; ``` ``` process (...) begin X2 <= '1' after 3 ns; X2 <= '0' after 5 ns; end process; ``` # Inertial Delay (2) ``` process (...) begin X2 <= '1' after 5 ns; X2 <= '1' after 3 ns; end process; ``` ``` process (...) begin X2 <= '0' after 3 ns; X2 <= '0' after 5 ns; end process; ``` ### **Transport Delay** ``` process (...) begin X2 <= transport '1' after 5 ns; X2 <= transport '0' after 3 ns; end process; ``` ### **Inertial Delay** ``` process (...) begin X2 <= v1 after t1 ns; X2 <= v2 after t2 ns; end process; ``` ### **Transport Delay** ``` process (...) begin X2 <= transport v1 after t1 ns; X2 <= transport v2 after t2 ns; end process; ``` # Signals & Variable Assignment Example 1 #### References - [1] http://en.wikipedia.org/ - [2] J. V. Spiegel, VHDL Tutorial, http://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html - [3] J. R. Armstrong, F. G. Gray, Structured Logic Design with VHDL - [4] Z. Navabi, VHDL Analysis and Modeling of Digital Systems - [5] D. Smith, HDL Chip Design - [6] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html - [7] VHDL Tutorial VHDL onlinewww.vhdl-online.de/tutorial/