Binary Angle Measurement (5A)

- Adaptive CORDIC
- •

Young Won Lim 06/07/2012 Copyright (c) 2012 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Young Won Lim 06/07/2012

BAM Background

T.K. Rodrigues, "Adaptive CORDIC: Using Parallel Angle Recording to Accelerate Rotations", IEEE Trans on Computers, 2010

BAM (5A)

 $Q = \{45^{\circ}, 26.565^{\circ}, 14.036^{\circ}, 7.125^{\circ}, 3.576^{\circ}, 1.79^{\circ}, 0.895^{\circ}, 0.448^{\circ}, 0.2238^{\circ}\}$

Angle Constants that is used

 $= 25.1268^{\circ}$

 $+0.448^{\circ}$

+0.2238°

- $+0.895^{\circ}$
- -3.576° +1.79°
- $+14.036^{\circ}$

 -7.125°

- -26.565°
- $+45^{\circ}$

Rotation of 25 degree

Original CORDIC

 $25^{\circ} \approx$

Vector Rotation (2)

Vector Rotation (3)

Successive Rotations

BAM (5A)

CORDIC Rotation

BAM (5A)

$\cos\,\theta\,$ in term of tan θ

References

- [1] http://en.wikipedia.org/
- [2] CORDIC FAQ, www.dspguru.com
- [3] R. Andraka, A survey of CORDIC algorithms for FPGA based computers
- [4] J. S. Walther, A Unified Algorithm for Elementary Functions
- [5] J. P. Deschamps, G. A. Bioul, G.D. Sutter, Synthesis of Arithmetic Circuits
- [6] T.K. Rodrigues, "Adaptive CORDIC: Using Parallel Angle Recording to Accelerate Rotations", IEEE Trans on Computers, 2010