Binary Angle Measurement (5A)

- Adaptive CORDIC
-

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

BAM Background

T.K. Rodrigues, "Adaptive CORDIC: Using Parallel Angle Recording to Accelerate Rotations", IEEE Trans on Computers, 2010

Rotation of 25 degree

Original CORDIC

$$
\begin{aligned}
25^{\circ} \approx & +45^{\circ} \\
& -26.565^{\circ} \\
& +14.036^{\circ} \\
& -7.125^{\circ} \\
& -3.576^{\circ} \\
& +1.79^{\circ} \\
& +0.895^{\circ} \\
& +0.448^{\circ} \\
& +0.2238^{\circ} \\
= & 25.1268^{\circ}
\end{aligned}
$$

Angle Constants that is used

$$
Q=\left\{45^{\circ}, 26.565^{\circ}, 14.036^{\circ}, 7.125^{\circ}, 3.576^{\circ}, 1.79^{\circ}, 0.895^{\circ}, 0.448^{\circ}, 0.2238^{\circ}\right\}
$$

Vector Rotation (2)

Vector Rotation (3)

Successive Rotations

CORDIC Rotation

$\cos \theta$ in term of $\tan \theta$

References

[1] http://en.wikipedia.org/
[2] CORDIC FAQ, www.dspguru.com
[3] R. Andraka, A survey of CORDIC algorithms for FPGA based computers
[4] J. S. Walther, A Unified Algorithm for Elementary Functions
[5] J. P. Deschamps, G. A. Bioul, G.D. Sutter, Synthesis of Arithmetic Circuits
[6] T.K. Rodrigues, "Adaptive CORDIC: Using Parallel Angle Recording to Accelerate Rotations", IEEE Trans on Computers, 2010

