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The Butterfly Swap Operations

Communicators and Groups defines
collection of processes that may communicate with each other. 

Need to specify a communicator as an argument. 

MPI_COMM_WORLD - predefined communicator 
that includes all of your MPI processes.

Within a communicator, every process has its own unique, integer identifier, 
called rank or “task ID”.

Used to specify the source and destination. 
Also can be used in conditional statements.
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MPI_Alltoall

MPI_Alltoall -  Sends data from all to all processes

int MPI_Alltoall( void *sendbuf, int sendcount, MPI_Datatype sendtype,
               void *recvbuf, int recvcnt, MPI_Datatype recvtype, MPI_Comm comm )

INPUT PARAMETERS
       sendbuf - starting address of send buffer (choice)
       sendcounts - integer array equal to the group size specifying the number of
              elements to send to each processor
       sendtype - data type of send buffer elements (handle)
       recvcounts -  integer  array equal to the group size specifying the maximum
              number of elements that can be received from each processor
       recvtype - data type of receive buffer elements (handle)
       comm   - communicator (handle) 

OUTPUT PARAMETERS
 recvbuf - address of receive buffer (choice)
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MPI_Alltoallv

MPI_Alltoallv -  Sends data from all to all processes, with a displacement

int MPI_Alltoallv (void *sendbuf, int *sendcnts, int *sdispls, MPI_Datatype sendtype,
 void *recvbuf, int *recvcnts, int *rdispls, MPI_Datatype recvtype,  MPI_Comm comm )

INPUT PARAMETERS
       sendbuf - starting address of send buffer (choice)
       sendcounts - integer array equal to the group size specifying the number of
              elements to send to each processor
       sdispls -  integer  array  (of length group size). Entry j specifies the displacement

(relative to sendbuf  from which to take the outgoing data destined for process j
       sendtype - data type of send buffer elements (handle)
       recvcounts -  integer  array equal to the group size specifying the maximum
              number of elements that can be received from each processor
       rdispls - integer array (of length group size). Entry  i  specifies  the displacement 

(relative to recvbuf  at which to place the incoming data from process
recvtype - data type of receive buffer elements (handle)

       comm   - communicator (handle) 

OUTPUT PARAMETERS
 recvbuf - address of receive buffer (choice)
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MPI_Alltoallv

Alltoallv
flexibility in that the location of send data is specified by sdispls 
and the location of the placement of receive data is specified by rdispls. 

The jth block sent from process i is received 
by process j and is placed in the ith block. 

Need not be all the same size block 

sendcount[j], sendtype at process i 
recvcount[i], recvtype at process j. 

The amount of data sent must be equal to the amount of data received,
pairwise between every pair of processes. 

Distinct type maps between sender and receiver are still allowed. 
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MPI_Alltoallw

ALLTOALLW in MPI-2. 

Can specify separately count, displacement, and datatype. 

The displacement of blocks is specified in bytes. 

Can be seen as a generalization several MPI functions 
depending on the input arguments. 
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Communication Parameters

Point to point communication 

Simple latency / bandwidth model

MPI message transfer is complex

Not good for ping-pong benchmark data

Message Envelope
supplementary information such as 
length, sender, tag, etc

Eager Protocol

Rendezvous  Protocol
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Eager Protocol

For short messages

The message itself + supplementary information (message envelope)
may be sent and stored at the receiver side
without receiver’s intervention 

A matching receiver operation may not be needed
But afterward, the message in the intermediate buffer 
must be copied to the receive buffer

+Synchronization overhead is reduced
- May require large amount of preallocated buffer space
- Flooding a process with many eager messages may overflow → contention
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Rendezvous Protocol

For large messages

Buffering the data is impossible

The message envelope is immediately stored at the receiver
The actual message transfer blocks until the user’s receive buffer is available

Extra data copy could be avoided, 
improving effective bandwidth, 
but sender and receiver must synchronize.

Rendezvous Protocol
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Blocking

● Standard

● Buffered

● Synchronous

● Ready

Communication Modes

Immediate

● Standard

● Buffered

● Synchronous

● Ready
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does not return until 
the message data and envelope have been safely stored away 
so that the sender is free to access and overwrite the send buffer. 

The message might be copied directly into the matching receive buffer, 
or it might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. 

A blocking send can complete 
as soon as the message was buffered, 
even if no matching receive has been executed by the receiver. 

On the other hand, message buffering can be expensive, 
as it entails additional memory-to-memory copying, 
and it requires the allocation of memory for buffering. 

MPI offers the choice of several communication modes that allow one to control 
the choice of the communication protocol.

Blocking 
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It is up to MPI to decide whether outgoing messages will be buffered. 

1) MPI may buffer outgoing messages. 
→ the send call may complete before a matching receive is invoked. 

2) Buffer space may be unavailable, or 
    MPI may choose not to buffer outgoing messages, for performance reasons.

→ the send call will not complete until a matching receive has been posted,
 and the data has been moved to the receiver.

Thus, a send in standard mode can be started 
whether or not a matching receive has been posted. 
It may complete before a matching receive is posted. 

The standard mode send is non-local: successful completion of the send 
operation may depend on the occurrence of a matching receive.

Standard Communication Mode 
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A buffered mode send operation can be started 
whether or not a matching receive has been posted. 

It may complete before a matching receive is posted. 

However, unlike the standard send, this operation is local, 
and its completion does not depend on the occurrence of a matching receive.

Thus, if a send is executed and no matching receive is posted, 
then MPI must buffer the outgoing message, 
so as to allow the send call to complete. 

An error will occur if there is insufficient buffer space. 
The amount of available buffer space is controlled by the user.

Buffer allocation by the user may be required 
for the buffered mode to be effective.

Buffered Communication Mode 



MPI 15 Young Won Lim
08/20/2012

A send that uses the synchronous mode can be started 
whether or not a matching receive was posted. 

However, the send will complete successfully 
only if a matching receive is posted, 
and the receive operation has started 
to receive the message sent by the synchronous send. 

Thus, the completion of a synchronous send 
not only indicates that the send buffer can be reused, 
but also indicates that the receiver has reached a certain point in its execution, 
namely that it has started executing the matching receive. 

If both sends and receives are blocking operations 
then the use of the synchronous mode provides 
synchronous communication semantics: 
a communication does not complete at either end 
before both processes rendezvous at the communication. 

A send executed in this mode is non-local.

Synchronous Communication Mode 
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A send that uses the ready communication mode may be started 
only if the matching receive is already posted. 
Otherwise, the operation is erroneous and its outcome is undefined. 

On some systems, this allows the removal of a hand-shake operation that is 
otherwise required and results in improved performance. 

The completion of the send operation 
does not depend on the status of a matching receive, 
and merely indicates that the send buffer can be reused. 

A send operation that uses the ready mode has the same semantics as a 
standard send operation, or a synchronous send operation; 

it is merely that the sender provides additional information to the system (namely 
that a matching receive is already posted), that can save some overhead. 

In a correct program, therefore, a ready send could be replaced by a standard 
send with no effect on the behavior of the program other than performance.

Ready Communication Mode 
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overlapping communication and computation
light-weight threads vs nonblocking communication. 

A nonblocking send (receive) start call initiates the send (receive) operation,  
but does not complete it. 

The send (receive) start call will return 
before the message was copied out of  (into) the send (receiver) buffer.
 
A separate send (receive) complete call 
is needed to complete the communication, i.e., to verify that the data 
has been copied out of the send buffer (received into the receive buffer) . 

With suitable hardware, the transfer of data out of the sender (receiver) memory 
may proceed concurrently with computations done at the sender (receiver) after 
the send (receive) was initiated and before it completed. 

The use of nonblocking receives may also avoid 
system buffering and memory-to-memory copying, 
as information is provided early on the location of the receive buffer.

NonBlocking Communication (1)
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Nonblocking send start calls can use the same four modes as blocking sends: 
standard, buffered, synchronous and ready. 

Sends of all modes, ready excepted, can be started whether or not a matching 
receive has been posted ; 
a nonblocking ready send can be started only if a matching receive is posted. 

In all cases, the send start call is local: 
it returns immediately, irrespective of the status of other processes. 

If the call causes some system resource to be exhausted, then it will fail and 
return an error code. Quality implementations of MPI should ensure that this 
happens only in ``pathological'' cases. That is, an MPI implementation should be 
able to support a large number of pending nonblocking operations.

The send-complete call returns when data has been copied out of the send 
buffer. It may carry additional meaning, depending on the send mode.

NonBlocking Communication (2)
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If the send mode is synchronous, then the send can complete only if a 
matching receive has started. That is, a receive has been posted, and has been 
matched with the send. In this case, the send-complete call is non-local. Note 
that a synchronous, nonblocking send may complete, if matched by a 
nonblocking receive, before the receive complete call occurs. (It can complete as 
soon as the sender ``knows'' the transfer will complete, but before the receiver 
``knows'' the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no 
pending receive. In this case, the send-complete call is local, and must succeed 
irrespective of the status of a matching receive.

If the send mode is standard then the send-complete call may return before a 
matching receive occurred, if the message is buffered. On the other hand, the 
send-complete may not complete until a matching receive occurred, and the 
message was copied into the receive buffer.

Nonblocking sends can be matched with blocking receives, and vice-versa.

NonBlocking Communication (3)
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MPI_Send
MPI_Send will not return until you can use the send buffer. 
It may or may not block 
(it is allowed to buffer, either on the sender or receiver side, 
or to wait for the matching receive).

MPI_Bsend
May buffer; 
returns immediately and you can use the send buffer. 
A late add-on to the MPI specification. 
Should be used only when absolutely necessary.

MPI_Ssend
will not return until matching receive posted

MPI_Rsend
May be used ONLY if matching receive already posted. 
User responsible for writing a correct program.

Send Modes (1)
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MPI_Isend
Nonblocking send. But not necessarily asynchronous. 
You can NOT reuse the send buffer until either a successful, wait/test or you KNOW that 
the message has been received (see MPI_Request_free). 
Note also that while the I refers to immediate, there is no performance requirement on 
MPI_Isend. An immediate send must return to the user without requiring a matching 
receive at the destination. An implementation is free to send the data to the destination 
before returning, as long as the send call does not block waiting for a matching receive. 
Different strategies of when to send the data offer different performance advantages and 
disadvantages that will depend on the application.

MPI_Ibsend
buffered nonblocking

MPI_Issend
Synchronous nonblocking. Note that a Wait/Test will complete only when the matching 
receive is posted.

MPI_Irsend
As with MPI_Rsend, but nonblocking.

Send Modes (2)
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MPI_Send

computation communication

After return from MPI_Send,
Send / Receive buffer can be used

Sending data had departed from the sent buffer
Receiving data has arrived completely at the receive buffer

Blocking Communication

Until MPI 2.2, collective communication 
is always blocking communication

MPI_Recv

Post send / receive operation,
Handshake,
Data transfer
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MPI_Isend

MPI_Wait

computation communication

After return from MPI_Send,
Send / Receive buffer cannot be used

MPI_Irecv
MPI_Isend, MPI_Irecv merely initiates 
 a message transmission and returns 
immediately to the user.

Synchronization is required
MPI_Wait: blocks until  the buffer is available
MPI_Test: only tests for completion and returns flag

C
an do ot her usefu l 

com
putat ion unless  it 

access th e buffer

Non-Blocking Communication (1)
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MPI_Isend

MPI_Wait

computation communication

MPI_Irecv

Post send / receive operation,
Handshake,
Data transfer

possible message transfers

Non-Blocking Communication (2)
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MPI_Irecv 1
MPI_Irecv 2
MPI_Irecv 3

MPI_Irecv n

MPI_Waitall

computation communication

Post send / receive operation,
Handshake,
Data transfer

Multiple Request

MPI_Send MPI_Send MPI_Send
P1 P2 Pn
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Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

RecvSend

RecvSend

RecvSend
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Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

Recv

Send

Recv

Send

Recv

Send

Blocking but not Synchronous Send

Blocking Recv

Eager Delivery 
Not Synchronous – enables a send to end 
before the corresponding recv is posted
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Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

Recv

Send

Recv

Send

Recv

Send

Blocking Synchronous Send

Blocking Recv

Eager Delivery 
Synchronous – forces a send finish only 
after it’s matching recv is posted
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Implicit Serialization and Synchronization

P1 P2 P3 P4 P5

RecvSend

Recv

Send

Recv

Send

Recv

Send

Blocking Send

Blocking Recv

Rendezvous Protocol – forces a serial 
message transmission because buffering is 
not used 
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Rank Reorder

ROUND-ROBIN One rank per node, wrap around
Sequential ranks are placed on the next node

SMP-STYLE Fill up one node before going to next
All cores from all nodes are allocated in a sequential order

FOLDED RANK One rank per node, wrap back

PE 0, 1, 2, 3, 4, 5, 6, …. 

Ex) MPICH on CrayPAT MPICH_RANK_REORDER_METHOD



MPI 31 Young Won Lim
08/20/2012

Rank 

MPI_Comm_size : Determines the size of the group associated with a communicator

MPI_Comm_rank : Determines the rank of the calling process in the communicator

MPI_Cart_create : Makes a new communicator to which topology information has been
 attached

MPI_Dims_create : Creates a division of processors in a cartesian grid

MPI_Cart_coords : Determines process coords in cartesian topology given rank in group 

MPI_Cart_rank : Determines process rank in communicator given Cartesian location

MPI_Cart_shift : Returns the shifted source and destination ranks, given a shift
Direction and amount 
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Rank 

int MPI_Comm_size ( MPI_Comm comm, int *size )
 
int MPI_Comm_rank ( MPI_Comm comm, int *rank ) 

int MPI_Cart_create (MPI_Comm comm_old, int ndims, int *dims, int *periods, 
                   int reorder, MPI_Comm *comm_cart)

Int MPI_Dims_create (int nnodes, int ndims, int *dims)

int MPI_Cart_coords (MPI_Comm comm, int rank, int maxdims, int *coords)

int MPI_Cart_rank (MPI_Comm comm, int *coords, int *rank)

int MPI_Cart_shift (MPI_Comm comm, int direction, int displ, int *source, int *dest)
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Rank 

int MPI_Cart_create (MPI_Comm comm_old, int ndims, int *dims, int *periods, 
                   int reorder, MPI_Comm *comm_cart)

MPI_Cart_create (MPI_COMM_WORLD, // standard communicator
2, // two dimensions
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Nonblocking s. Asynchronous Communication 

Nonblocking :

implies that the message buffer cannot be used 
after the call has returned from the MPI library.

It depends on the implementation 
whether data transfer (MPI progress) takes place 
outside MPI while user code is being executed

If MPI_Irecv() triggers a truly asynchronous data transfer, 

the measured overall time will stay constant with increasing delay until the delay equals the 
message transfer time. Beyond this point, there will be a linear rise in execution time.

If MPI progress occurs only inside the MPI library 
(which means, in this example, within MPI_Wait()), 

the time for data transfer and the time for executing do_work() will always add up 
and there will be linear rise of overall execution time starting from zero delay

  T = MPI_Wtime()

MPI_Irecv(...);
do_work( delay );
MPI_Wait(...);

  T = MPI_Wtime() - T;
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Nonblocking s. Asynchronous Communication 

If MPI_Irecv() triggers a truly asynchronous data transfer, 

the measured overall time will stay constant with increasing 
delay until the delay equals the message transfer time. 
Beyond this point, there will be a linear rise in execution 
time.

If MPI progress occurs only inside the MPI library 
(which means, in this example, within MPI_Wait()), 

the time for data transfer and the time for executing 
do_work() will always add up 
and there will be linear rise of overall execution time starting 
from zero delay

  T = MPI_Wtime()

MPI_Irecv(...);
do_work( delay );
MPI_Wait(...);

  T = MPI_Wtime() - T;

 truly asynchronous

only inside the MPI library
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Intranode point-to-point communication (1)

Cray XT5 system

One XT5 node
– 2 AMD Opteron chips 

With a 2MB quad-core L3 group each
These nodes are connected via 3D torus network

Different Level of 
point-to-point communication characteristics

Intranode intrasocket : inside an L3 group
Intranode intersocket : between core on different sockets
Internode : between different nodes

Internode ↔ Intranode : large difference
Intersocket ↔ Intrasocket : similar 
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Intranode point-to-point communication (2)

False Assumption: 
Any intranode MPI communication is infinitely fast.

Depends on the MPI implementation

When the MPI library is not aware of intranode 
communication, relatively slow network protocols are used 
instead of memory-to-memory copies

Nontemporal stores or cache line zero
Depending on message size and cache sizes
Large message / No shared cache : avoid the write allocate

Single copy (simple block copy command) 
From send buf to recv buf 
(synchronizing randezvous protocol) 
Intermediate buffer (additional copy) 

Hardware support for intranode memory-to-memory copy
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Ping-Pong Benchmark (1)

P1 P2

Recv

Send

Send

Recv

T = T l +
N
B

Message Size

Latency Max Bandwidth

Beff =
N
T =

N
T l + N /B

A multicore processor with a shared cache
- fit into the cache

IMB (Intel Benchmarks)
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Ping-Pong Benchmark (2)

T = T l +
N
B

Beff =
N
T =

N
T l + N /B

Large sized message : effective bandwidth saturating

T ≈ T l

Small sized message : latency dominating

Beff ≈ B

May be inaccurate because of the followings:

All protocols have some overhead (headers)

Some protocols have min message size > 1 byte

Involves multiple software layers (added latencies)

May not have optimized low-latency I/O

Measured latency with N=0

Different buffering algorithms at a certain message size

Extremely large message must be split into smaller chunks
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Ping-Pong Benchmark (3)

T = T l +
N
B

Beff = N
T = N

T l + N /B = B
2 T l =

N1 /2

B BT l = N1/2

Beff (βB,T l) = N
T l + N /βB

Beff (B,T l) = N
T l + N /B

Beff (βB,T l)
Beff (B,T l)

=
T l + N /B
T l + N /βB

=
1+ N /BT l

1+ N /βBT l
=

1+ N /N1/2

1+ N /βN1/2

Whether an increase in maximum network bandwidth by a factor of     

is really beneficial for all messages?

β
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Message Aggregation
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