Downsampling (4B)

- - •

Copyright (c) 2009, 2010, 2011 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Band-limited Signal

4B Downsampling

Time Sequence

4

4B Downsampling

Normalized Radian Frequency

$$\hat{\omega} = \omega \cdot T_s = \frac{\omega}{1/T_s}$$

$$\hat{\omega} = \frac{\omega}{f_s} = 2\pi \frac{f}{f_s}$$

$$1 \qquad 1$$
Normalized to f_s

Normalized Radian Frequency

The Same Normalized Radian Frequency

The Highest Frequency: f_H , $4 f_H$

$$\frac{f_H}{1/4T} = f_H \cdot 4T \qquad \frac{4f_H}{1/T} = f_H \cdot 4T$$

Time Sequence

Time Sequence Spectrum in Linear Frequency

7

4B Downsampling

Time Sequence Spectrum in Normalized Frequency

4B Downsampling

Time Sequence

4B Downsampling

Z-Transform Analysis

$$\delta_{D}[n] = \begin{cases} 1 & \text{if } n/D \text{ is an integer} \\ 0 & \text{otherwise} \end{cases}$$

$$v[n] = \delta_{D}[n]x[n]$$

$$V[z] = \cdots + v[0]z^{0} + v[D]z^{-D} + v[2D]z^{-2D} + \cdots \qquad y[n]$$

$$V[z] = \sum_{n=-\infty}^{+\infty} v[n]z^{-n} = \sum_{m=-\infty}^{+\infty} v[mD]z^{-mD} = F(z^{D})$$

$$T \text{ Sampling Period}$$

Z-Transform Analysis

$$\delta_2[n] = \frac{1}{2}(1 + (-1)^n) = \frac{1}{2}(1 + e^{-j\pi n}) = e^{-j\pi} = -1$$

 $\left\{\begin{array}{c} 1\\ 0 \end{array}\right.$

$$v[n] = \frac{1}{2}x[n] + \frac{1}{2}e^{-j\pi n}x[n] \qquad x[n] = e^{j\omega n}$$

$$v[n] = \frac{1}{2}e^{j\omega n} + \frac{1}{2}e^{-j\pi n}e^{j\omega n} = \frac{1}{2}e^{j\omega n} + \frac{1}{2}e^{+j(\omega-\pi)n}$$

$$V(z) = \frac{1}{2} \sum_{n=-\infty}^{+\infty} \left(x[n] z^{-n} + x[n] (-z)^{-n} \right) = \frac{1}{2} X(z) + \frac{1}{2} X(-z)$$

$$V(\omega) = V(e^{j\omega}) = \frac{1}{2}X(e^{j\omega}) + \frac{1}{2}X(e^{-j\pi}e^{j\omega}) = \frac{1}{2}X(\omega) + \frac{1}{2}X(\omega - \pi)$$

Measuring Rotation Rate

Signals with Harmonic Frequencies (1)

		$e^{+j(1\cdot 2\pi)t} + e^{-j(1\cdot 2\pi)t}$
	1 HZ 1 cycle / sec	$\cos\left(1\cdot 2\pi t\right) = \frac{e}{2}$
	2 Hz 2 cycles / sec	$\cos(2 \cdot 2\pi t) = \frac{e^{+j(2 \cdot 2\pi)t} + e^{-j(2 \cdot 2\pi)t}}{2}$
	3 Hz 3 cycles / sec	$\cos(3 \cdot 2\pi t) = \frac{e^{+j(3 \cdot 2\pi)t} + e^{-j(3 \cdot 2\pi)t}}{2}$
\sim	4 Hz 4 cycles / sec	$\cos(4 \cdot 2\pi t) = \frac{e^{+j(4 \cdot 2\pi)t} + e^{-j(4 \cdot 2\pi)t}}{2}$
	5 Hz 5 cycles / sec	$\cos(5 \cdot 2\pi t) = \frac{e^{+j(5 \cdot 2\pi)t} + e^{-j(5 \cdot 2\pi)t}}{2}$
	6 Hz 6 cycles / sec	$\cos(6\cdot 2\pi t) = \frac{e^{+j(6\cdot 2\pi)t} + e^{-j(6\cdot 2\pi)t}}{2}$
	7 Hz 7 cycles / sec	$\cos(7 \cdot 2\pi t) = \frac{e^{+j(7 \cdot 2\pi)t} + e^{-j(7 \cdot 2\pi)t}}{2}$
$\uparrow \uparrow \uparrow$		

Signals with Harmonic Frequencies (2)

Sampling Frequency

Nyquist Frequency

Aliasing

Sampling

4B Downsampling

Sampling

Angular Frequencies in Sampling

continuous-time signals

Signal Frequency

$$f_0 = \frac{1}{T_0}$$

Signal Angular Frequency

$$\omega_0 = 2\pi f_0 (rad/sec)$$

sampling sequence

Sampling Frequency

$$f_s = \frac{1}{T_s}$$

Sampling Angular Frequency

$$\omega_s = 2\pi f_s (rad lsec)$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann
- [4] R. Cristi, "Modern Digital Signal Processing"