## DFT Analysis (5B)

Copyright (c) 2009, 2010, 2011 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

## Frequency View of a DFT Matrix



Normalized Frequency

$$
f_{o}=\frac{f_{s}}{N}
$$

## Frequency View of a X[i] Vector



## Frequency and Time Interval (1)

Freq Domain


## Frequency and Time Interval (2)



## Frequency and Time Interval (3)

Freq Domain


## Data Truncation Frequency Resolution Zero Padding Periodogram Spectral Plot

Amplitude spectrum in quantity peak
Phase spectrum in radians
Amplitude spectrum in volts rms
Phase spectrum in degrees
Power spectrum
Signals without discontinuity
Signals with discontinuity

Sampling frequency is not an integer multiple of the FFT length

Leakage

## Periodic Signals

Frequency Spacing

$$
\Delta f=\frac{1}{N \Delta t}
$$

One Sided Fourier Series Coefficient $\frac{1}{N} X(k)$

Two Sided Fourier Series Coefficient $\frac{1}{N} X(k) \quad k=0, \frac{N}{2}$ $\frac{2}{N} X(k) \quad k=1, \cdots, \frac{N}{2}-1$

Frequency Scale
$k \Delta f$

Aperiodic Signals
$\Delta f=\frac{1}{N \Delta t}$
One Sided Fourier Series Coefficient
$\frac{\Delta t}{N} X(k)$
Two Sided Fourier Series Coefficient
$\frac{\Delta t}{N} X(k) \quad k=0, \frac{N}{2}$
$\frac{2 \Delta t}{N} X(k) \quad k=1, \cdots, \frac{N}{2}-1$
$k \Delta f$

## Random Signals

One-sided Power Spectral Density

$$
P=\sum_{k=0}^{N-1} S(k) \Delta f
$$

One-sided Power Spectral Density

$$
P=\sum_{k=0}^{N / 2} S_{1}(k) \Delta f
$$

$$
S_{1}(k)=2 \mathrm{~S}(k) \quad k=1, \ldots, \frac{N}{2}-1
$$

$$
S_{1}(k)=S(k) \quad k=0, \frac{N}{2}
$$

Two Sided Fourier Series Coefficient
$\frac{1}{N \Delta t} \sum x^{2} \Delta t$
$\sum S \Delta f=\frac{1}{N \Delta t} \sum S$
$S(k)=\frac{\Delta t}{N}|X(k)|^{2}$
$k \Delta f$

Amplitude Spectrum

$$
\begin{aligned}
& A_{k}=\frac{1}{N}|X(k)|=\frac{1}{N} \sqrt{\mathfrak{R}^{2}(X(k))+\mathfrak{J}^{2}(X(k))} \\
& k=0,1,2, \cdots, N-1
\end{aligned}
$$

One Sided Amplitude Spectrum

$$
\begin{array}{ll}
\bar{A}_{k}=\frac{1}{N}|X(0)| & k=0 \\
\bar{A}_{k}=\frac{2}{N}|X(0)| & k=1,2, \cdots, N / 2
\end{array}
$$

Frequency Bin

$$
f=\frac{k f_{s}}{N}
$$

Frequency Bin

$$
f=\frac{k f_{s}}{N}
$$

Phase Spectrum

$$
\phi_{k}=\tan ^{-1}\left(\frac{\mathfrak{J}(X(k))}{\mathfrak{R}(X(k))}\right) \quad k=0,1,2, \cdots, N-1
$$

## $\left[0, \quad \frac{f_{s}}{2}\right]$

## Fourier Transform

$f(t) \quad$ A continuous sum of weighted exponential functions:

$$
\begin{aligned}
& f(t) e^{-j \omega t} \\
& -\infty<\omega<+\infty
\end{aligned}
$$

Not so useful in transient analysis

## Laplace Transform

$$
f(t) e^{-s t}=f(t) e^{-(\sigma+j \omega) t}
$$

Linear Time Domain Analysis
Initial Condition



## z Transform

$$
f[n] z^{-n}
$$

Discrete Time System
Difference Equation


$$
z=e^{s T}=e^{\sigma T} e^{j \omega T}
$$



## References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

