Uncertainty

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Random Variable

State Space
$\Omega=\left\{\right.$ outcome $_{1}$, outcome ${ }_{2}, \cdots$, outcome $\left._{n}\right\}$

Random Variable
$X=x_{i} \quad i=1,2, \cdots, n$

Event

Event

Self-Information

$$
\begin{aligned}
& \frac{I\left(x_{i}\right)}{T}=\log \left(\frac{1}{P\left(x_{i}\right)}\right)=-\log \frac{P\left(x_{i}\right)}{4} \\
& \text { Unit }=\text { bits } \quad \log _{2} \\
& \text { Unit }=\text { nats } \quad \log _{e}
\end{aligned} \begin{aligned}
& \text { Probability of } \\
& \text { the event } X=x_{i}
\end{aligned}
$$

Self-information

Common Emitter (2)

Common Emitter (2)

Maintain Magnetic Field

Storing Magnetic Energy

Dissipate Magnetic Energy

Pulse

Pulse

References

[1] http://en.wikipedia.org/
[2] R Bose, Information Theory Coding and Cryptography, 2003

