Laplace Transform (4B)

•

Copyright (c) 2012 Young W. Lim.	
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of included in the section entitled "GNU Free Documentation License".	1.2 or any later of the license is
Please send corrections (or suggestions) to youngwlim@hotmail.com.	
This document was produced by using OpenOffice and Octave.	

Inverse Laplace Transform

Laplace Transform

$$F(s) = \int_{0}^{\infty} f(t)e^{-st} dt$$
$$= \int_{0}^{\infty} \{f(t)e^{-xt}\} e^{-iyt} dt$$

Inverse Laplace Transform

$$f(t) = \frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} F(s) e^{st} ds$$

Inverse Laplace Transform

Laplace Transform

$$F(s) = \int_{0}^{\infty} f(t)e^{-st} dt$$
$$= \int_{0}^{\infty} \{f(t)e^{-xt}\} e^{-iyt} dt$$

F(s) converges absolutely for Re(s) = $x > \alpha$

$$F(x,y) = \int_{0}^{\infty} \left\{ \underline{f(t)}e^{-xt} \right\} e^{-iyt} dt$$

$$F(x,y) = \int_{0}^{\infty} \underline{g(t)} e^{-iyt} dt$$

Fourier Transform $g(t) = f(t)e^{-xt}$

$$f(t)$$
 continuous on $[0, ∞)$
 $f(t) = 0$ for $t < 0$
 $f(t)$ has exponential order α
 $f'(t)$ piecewise continuous on $[0, ∞)$

$$\int_{0}^{\infty} |f(t)e^{-st}| dt = \int_{0}^{\infty} |f(t)| e^{-xt} dt < \infty$$

$$x > \alpha$$

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(x, y) e^{iyt} dy$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(x, y) e^{iyt} dy$$

Inverse Fourier Transform

Fourier-Mellin Inversion Formula

$$F(x,y) = \int_{0}^{\infty} \{\underline{f(t)}e^{-xt}\} e^{-iyt} dt$$

$$F(x,y) = \int_{0}^{\infty} \underline{g(t)} e^{-iyt} dt$$

Fourier Transform
$$g(t) = f(t)e^{-xt}$$

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(x, y) e^{iyt} dy$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(x, y) e^{xt} e^{iyt} dy$$

Inverse Fourier Transform

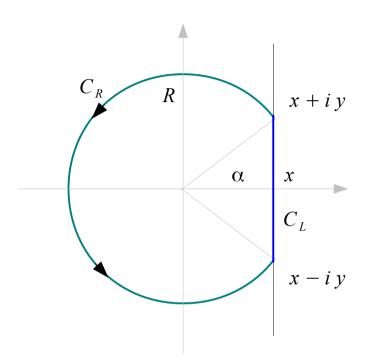
$$s = x + iy$$
 $ds = idy$ $x > \alpha$ (fixed x)

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} F(x,y) e^{st} ds = \lim_{y\to\infty} \frac{1}{2\pi i} \int_{x-iy}^{x+iy} F(s) e^{st} ds$$

Complex Inversion Formula (Fourier-Mellin Inversion Formula)

Vertical line at x : Bromwich line

Contour Integration (1)



$$\frac{1}{2\pi i} \int_{C} F(s)e^{st} ds$$

$$= \frac{1}{2\pi i} \int_{C_R} F(s)e^{st} ds + \frac{1}{2\pi i} \int_{C_L} F(s)e^{st} ds$$

F(s) is analytic for $Re(s) = x > \alpha$

F(s)all singularities must lie to the left of Bromwich line

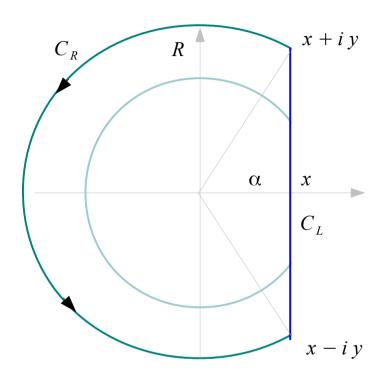
Assume F(s) is analytic for Re(s) = $x < \alpha$ except for having finitely many poles

$$z_{1,} z_{2,} \cdots, z_{n}$$

$$\frac{1}{2\pi i} \int_{C} F(s)e^{st} ds = \sum_{k=1}^{n} Res(z_{k})$$

$$= \frac{1}{2\pi i} \int_{C_{R}} F(s)e^{st} ds + \frac{1}{2\pi i} \int_{x-iy}^{x+iy} F(s)e^{st} ds$$

Contour Integration (2)



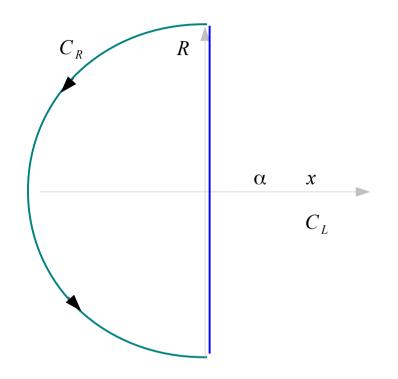
$$\frac{1}{2\pi i} \int_{C} F(s)e^{st} ds = \sum_{k=1}^{n} Res(z_{k})$$

$$= \frac{1}{2\pi i} \int_{C_{R}} F(s)e^{st} ds + \frac{1}{2\pi i} \int_{x-iy}^{x+iy} F(s)e^{st} ds$$

$$\lim_{R\to\infty} \int_{C_R} F(s)e^{st} ds = 0 \quad (t > 0)$$

$$f(t) = \lim_{y \to \infty} \frac{1}{2\pi i} \int_{x-iy}^{x+iy} F(s) e^{st} ds = \sum_{k=1}^{n} Res(z_k)$$

Contour Integration (2)



$$\lim_{R \to \infty} \frac{\int_{C_R} F(s)e^{st} ds}{\int_{C_R} F(s)e^{st} ds} = 0 \quad (t > 0)$$

$$s = Re^{i\theta} = R(\cos\theta + i\sin\theta)$$

$$e^{st} = e^{Rt(\cos\theta + i\sin\theta)} = e^{Rt\cos\theta}e^{i\sin\theta}$$

$$|e^{st}| = e^{Rt\cos\theta}$$

$$\int_{C_R} F(s)e^{st} ds \le \int_{C_R} |F(s)||e^{st}||ds|$$

$$\le \frac{M}{R^{p-1}} \int_{\pi/2}^{3\pi/2} e^{Rt\cos\theta} d\theta$$

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann