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Energy and Power

Instantaneous Power

p(t) = Xz(t) real signal

Energy dissipated during Average power dissipated during
(=T/2, +T/2) (=T/2, +T/2)
+T/2 1 +T/2

T 2 T _ 2
El = [ X*(t)dt Px—?f x“(t)dt
~T/2 ~T/2

The rate at which energy is dissipated

Affects the performance
of a communication system

Determines the voltage
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Energy and Power Signals (1)

Energy dissipated during Average power dissipated during

(=T/2, +T/2) (=T/2, +T/2)
+T/2 +T/2
2
= f x“(t)dt — f x°
~T/2 T 7y

Energy Signal
Nonzero but finite energy

Power Signal

Nonzero but finite power

0 < E, <+ forall time 0 < P, < +o0 forall time

+T/2 ]_

. . . +T/2 )
E, = %irPf ., XH(t) dt P, = ;iq}o?f‘m x“(t) dt
= J.:i Xz(t) dt < +ow < +o0
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Energy and Power Signals (2)

Energy Signal
Nonzero but finite energy

0 < E, < +o0 forall time

Power Signal

Nonzero but finite power

0 < P, < +o forall time

+T/2 +T/2
E, = lim [ x(t) dt P, = lim — f -, X°(t) dt
T—)+oo
= f_z x*(t)dt < +o < +o0
+T/2 T T2 4
P, = ;1_)1'20 fT/Z (t)dt E = }{)IEO o X (t) dt
. B .
= lim= > 0 = lim B-T = +x

T >+

Non-periodic signals
Deterministic signals
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T >+

Periodic signals
Random signals

Young Won Lim
10/16/12




Energy and Power Spectral Densities (1)

Total Energy, Non-periodic Average power, Periodic
oo +T /2
= [ X*(t) dt _—f x*
% —T/2
Parseval's Theorem, Non-periodic Parseval's Theorem, Periodic
+ o0 — 2
= [ IX(fFdf = 2 e
= [ wif)df = [ G.(f)d
=2f, w(f)df =2[, G(f)df
Energy Spectral Density Power Spectral Density
2
w(f) = [X(f) = X fef olf —nfy)
n=—oo
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Energy and Power Spectral Densities (2)

Energy Spectral Density

= [T w(f)df

Parseval's Theorem, Non-periodic

Power Spectral Density

Z:|C|6 _nfo

n=—ow

Average power, Periodic
+T /2

—fx

—T/2
= [ _G/(f)df
Parseval's Theorem, Periodic

Non-periodic power signal
(having infinite energy) ?
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Energy and Power Spectral Densities (3)

Power Spectral Density Power Spectral Density
G,(f) = tim =|X, (£) = 3 e olf ~nfo)

Non-periodic power signal

having infinite ener ? -
( J . . ) Average power, Periodic
- No Fourier Series

T/2
truncate '
L f X2

x(t) wmy x.(t) (-I<t<+D)

- Fourier Transform X _.(f)

N~

—T/2

= [T G.f)df

+T/2

P, = lim T f x*(t)dt Parseval's Theorem, Periodic
T >x —T/2

+0o0

= [ um XL g

—0 T w0
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Autocorrelation of Energy and Power Signals

Autocorrelation of an Energy Signal

R(t) = [7 x(t)x(t+7)dt

(—%D‘< T §§+oo)

Autocorrelation of a Power Signal

R (1) = lim = f*m

X
T—)+oo

(t)x(t+<)dt

T/2

( 0 < T:S-+dﬂ

Autocorrelation of a Periodic Signal

R (1) = ij;i x(t)x(t+7)dt

(—%D:S T §;+oo)

R.(t) = W(f) R.(t) = G.(f)
R.(0) = [ x*(t) dt R,(0) = [ x(t) dt
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Ensemble Average

Random Variable Random Process
mx — E{X} mx(tk) — E{X(tk)}
= [ xpy(x) dx = [ xpy(x) dx

for a given time T,

E(X’] = o, + m, R,(t; t;) = E(X(t,) X(t,)]
- f—w x*Px(x) dx - !i: Iiz X1X; Px, x,(X1,X,) d X d X,
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Ensemble Average

Random Variable Random Process
mx — E{X} mx(tk) — E{X(tk)}
= [ xpy(x) dx = [ xpy(x) dx

for a given time T,

E{X"} = o, + m, R,(t;, t,) = E[X(t,) X(t,)]
- f—w x*Px(x) dx - !i: fiz X1X; Px, x,(X1,X,) d X d X,
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WSS (Wide Sense Stationary)

Random Process WSS Process
m,(t,) = E[X(t,)] ‘ m,(t,) = E{X(t,)]
— J"iz X Py (x) dx = My

for a given time [,

R (t, t,) = E(X(t,) X(t,)] ) R t,) = E[X(t)X(t,)
= fi: fi(: X1X2pX1,X2<X1,X2> dx,dx, - Rx(tl_ t2>
Signals & Spectra (1A) 12 Young o 1



Autocorrelation of Random and Power Signals

Autocorrelation of a Random Signal

R.(t) = E{X(t) X(t + 1)}

Autocorrelation of a Power Signal

+T/2

R (t) = lim — f x(t)x(t+<)dt

X
T-)+oo T2

( 0 < T:S-+dﬂ

Autocorrelation of a Periodic Signal

]_ +T,/2
R (1) = T—Oj_m x(t)x(t + ) dt

(—%D.S T:S-+mﬁ
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Time Averaging and Ergodicity

Random Process
m, (t,) = E{X(t,)}] R, (t, t,) = E{X(t,) X(t,)}

- g (x) dx = T b ) dxydx,

for a given time

WSS Process by ensemble average

mx(tk) = E{X(tk)} Rx<t1, tz) = E{X(tl)X(tz)}
= mx = Rx<t1_t2>
Ergodic Process by time average
mx(tk) = E{X(tk>} = Rx<t1, tz) = E{X(t1)X<t2)} =
m, = }im% " X(t)dt Rt —t,) = lim & [ X(t) X(t+7) dt
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Autocorrelation of Random and Power Signals

Autocorrelation of Power Spectral Density of
a Random Signal a Random Signal
I | 2

R, (1) = E(X(t) X(t+7)] G,(f) = lim —|X(f)

Rx(r) — Rx<_1:) Gx(f) — Gx(_f)

R,(t) = R,(0) G.(f) =0

R.(t) = G,(f) G.(f) & R,(7)

R,(0) = E[X’(t)] P(0) = [T Gx(f)df
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Time Averaging and Ergodicity
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