
Young Won Lim
12/06/2012

Semaphore (6A)

● Semaphore

Young Won Lim
12/06/2012

 Copyright (c) 2012 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Semaphore (6A) 3 Young Won Lim
12/06/2012

Semaphore

int semget (key_t key, int nsems, int semflg);
int semop (int semid, struct sembuf *sops, unsigned nsops);
int semctl (int semid, int semnum, int cmd, union semun arg);

struct sembuf {
 ushort sem_num; /* semaphore index in array */
 short sem_op; /* semaphore operation */
 short sem_flg; /* operation flags */
};

/* arg for semctl system calls. */
union semun {

int val; /* value for SETVAL */
struct semid_ds * buf; /* buffer for IPC_STAT & IPC_SET */
ushort * array; /* array for GETALL & SETALL */
struct seminfo * __buf; /* buffer for IPC_INFO */
void * __pad;

}

Semaphore (6A) 4 Young Won Lim
12/06/2012

Semaphore Example (1)

sem_num = 0
sem_op = -1
sem_flg = SEM_UNDO

sem_num = 1
sem_op = -1
sem_flg = SEM_UNDO

sem_num = 0
sem_op = +1
sem_flg = SEM_UNDO

sem_num = 1
sem_op = +1
sem_flg = SEM_UNDO

int semop (int semid, struct sembuf *sops, unsigned nsops);

sops

sops

sops

sops

semid = semget(key, 2, IPC_CREATE);

struct sembuf lock[] = { {0, -1, SEM_UNDO}, {1, -1, SEM_UNDO} };
struct sembuf unlock[] = { {0, +1, SEM_UNDO}, {1, +1, SEM_UNDO} };

semop(semid, &lock[0], 1);
// dec 1st semaphore

semop(semid, &lock[1], 1);
// dec 2nd semaphore

semop(semid, &unlock[0], 1);
// inc 1st semaphore

semop(semid, &unlock[1], 1);
// inc 2nd semaphore

Semaphore (6A) 5 Young Won Lim
12/06/2012

semget()

int semget (key_t key, int nsems, int semflg);

returns semaphore set identifier (sid) on success
semaphore set – array of semaphores

key – the return value of ftok()

nsems - the number of semaphores in a semaphore set (array)

semflg

IPC_CREAT Create the semaphore set
if it doesn't already exist

IPC_CREAT | IPC_EXCL Fails
if semaphore set already exists.

sid = semget(mykey, 2, IPC_CREAT | 0660)

Semaphore (6A) 6 Young Won Lim
12/06/2012

semop() - (1)

int semop (int semid, struct sembuf *sops, unsigned nsops);

semid - the return value of semget()
sops - a pointer to an array of operations

to be performed on the semaphore set
nsops - the number of operations in that array.

struct sembuf {
 ushort sem_num; // semaphore index in array (sem set)

// The index of the semaphore you wish to deal with
 short sem_op; // semaphore operation (eg inc, dec)

// The operation to perform (positive, negative, or zero)
 short sem_flg; // operation flags
};

sem_num = 0
sem_op = -1
sem_flg = SEM_UNDO

sops example

Semaphore (6A) 7 Young Won Lim
12/06/2012

semop() - (2)

negative sem_op – lock
is added to the semaphore.
the calling process sleeps until the requested amount
of resources are available (val > 0) in the semaphore

positive sem_op – unlock
is added to the semaphore.
returning resources back to the semaphore set

zero sem_op
the calling process will sleep() until the semaphore's
value is 0.
waiting for a semaphore to reach 100% utilization

int semop (int semid, struct sembuf *sops, unsigned nsops);

struct sembuf {
 ushort sem_num;
 short sem_op;
 short sem_flg;
};

Semaphore (6A) 8 Young Won Lim
12/06/2012

semop() - (3)

int semop (int semid, struct sembuf *sops, unsigned nsops);

SEM_UNDO : automatically undone when the process terminates

IPC_NOWAIT : If IPC_NOWAIT is not specified,
then the calling process sleeps
until the requested amount of resources
are available in the semaphore
(another process has released some).

nsops - the number of operations in that array.

Semaphore (6A) 9 Young Won Lim
12/06/2012

semop() - (4)

int semop (int semid, struct sembuf *sops, unsigned nsops);

struct sembuf {
 ushort sem_num;
 short sem_op;
 short sem_flg;
};

struct sembuf sem_lock = { 0, -1, IPC_NOWAIT };
a value of ``-1'' will be added to semaphore number 0
in the semaphore set.

semop(sid, &sem_lock, 1);

struct sembuf sem_unlock = { 0, 1, IPC_NOWAIT };
a value of ``1'' will be added to semaphore number 0
in the semaphore set.

semop(sid, &sem_unlock, 1);

Semaphore (6A) 10 Young Won Lim
12/06/2012

semctl() - (1)

int semctl (int semid, int semnum, int cmd, union semun arg);

 /* arg for semctl system calls. */
 union semun {
 int val; /* value for SETVAL */
 struct semid_ds *buf; /* buffer for IPC_STAT & IPC_SET */
 ushort *array; /* array for GETALL & SETALL */
 struct seminfo *__buf; /* buffer for IPC_INFO */
 void *__pad;
 };

IPC_STAT

IPC_SET

IPC_RMID

GETPID

GETNCNT

GETZCNT

GETALL

GETVAL

SETALL

SETVAL

Semaphore (6A) 11 Young Won Lim
12/06/2012

semctl() - (2)

int semctl (int semid, int semnum, int cmd, union semun arg);

IPC_STAT Retrieves the semid_ds structure for a set, and stores it in the
address of the buf argument in the semun union.

IPC_SET Sets the value of the ipc_perm member of the semid_ds structure for a
set. Takes the values from the buf argument of the semun union.

IPC_RMID Removes the set from the kernel.

GETALL Used to obtain the values of all semaphores in a set. The integer
values are stored in an array of unsigned short integers pointed to by the array
member of the union.

GETNCNT Returns the number of processes currently waiting for resources.

GETPID Returns the PID of the process which performed the last semop call.

GETVAL Returns the value of a single semaphore within the set.

GETZCNT Returns the number of processes currently waiting for 100% resource
utilization.

SETALL Sets all semaphore values with a set to the matching values contained
in the array member of the union.

SETVAL Sets the value of an individual semaphore within the set to the val
member of the union.

Semaphore (6A) 12 Young Won Lim
12/06/2012

semctl() - semid_ds

/* One semid data structure for each set of semaphores in the system. */
struct semid_ds {
 struct ipc_perm sem_perm; /* permissions .. see ipc.h */
 time_t sem_otime; /* last semop time */
 time_t sem_ctime; /* last change time */
 struct sem *sem_base; /* ptr to first semaphore in array */
 struct wait_queue *eventn;
 struct wait_queue *eventz;
 struct sem_undo *undo; /* undo requests on this array */
 ushort sem_nsems; /* no. of semaphores in array */
};

sem_perm This is an instance of the ipc_perm structure, which holds the permission
information for the semaphore set, including the access permissions, and information
about the creator of the set (uid, etc).

sem_otime Time of the last semop() operation (more on this in a moment)

sem_ctime Time of the last change to this structure (mode change, etc)

sem_base Pointer to the first semaphore in the array (see next structure)

sem_undo Number of undo requests in this array

sem_nsems Number of semaphores in the semaphore set (the array)

Semaphore (6A) 13 Young Won Lim
12/06/2012

semctl() - IPC_STAT, IPC_SET

int semctl (int semid, int semnum, int cmd, union semun arg);

union semun {
int val;
struct semid_ds * buf;
ushort * array;
struct seminfo * __buf;
void * __pad;

}

IPC_STAT Retrieves the semid_ds structure for
a set, and stores it in the address of the buf
argument in the semun union.

IPC_SET Sets the value of the ipc_perm
member of the semid_ds structure for a set.
Takes the values from the buf argument of the
semun union.

struct semid_ds mysemds; // allocate ds in memory

union semun arg;
arg.buf = &mysemds; // buf must point to an allocated ds

semctl(semid, 0, IPC_STAT, arg);

semctl(semid, 0, IPC_SET, arg);

&mysemds

arg.buf

mysemds

Semaphore (6A) 14 Young Won Lim
12/06/2012

semctl() - SETVAL, SETALL

int semctl (int semid, int semnum, int cmd, union semun arg);

union semun {
int val;
struct semid_ds * buf;
ushort * array;
struct seminfo * __buf;
void * __pad;

}

SETVAL Sets the value of an individual
semaphore within the set to the val member of
the union.

SETALL Sets all semaphore values with a set to
the matching values contained in the array
member of the union.

union semun arg;

arg.val = 5;
semctl(semid, 1, SETVAL, arg);

unsigned short val = {3, 5, 6};
arg.array = val;
semctl(semid, 0, SETALL, arg);

Semaphore (6A) 15 Young Won Lim
12/06/2012

semctl() - GETVAL, GETALL

int semctl (int semid, int semnum, int cmd, union semun arg);

union semun {
int val;
struct semid_ds * buf;
ushort * array;
struct seminfo * __buf;
void * __pad;

}

GETVAL Returns the value of a single
semaphore within the set.

GETALL Used to obtain the values of all
semaphores in a set. The integer values are
stored in an array of unsigned short integers
pointed to by the array member of the union.

usigned short val;

val = semctl(semid, 1, GETVAL, 0);

union semun arg;
unsigned short semarr[3];
arg.array = semarr;

semctl(semid, 0, GETALL, arg);

Semaphore (6A) 16 Young Won Lim
12/06/2012

Reference

References

[1] http://en.wikipedia.org/
[2] http://www.tldp.org/LDP/lpg/node46.html

http://en.wikipedia.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

