Mathematics for natural sciences I

Exercise sheet 12

Warm-up-exercises

Exercise 12.1. Prove that in \mathbb{Q} there is no element x such that $x^{2}=2$.
ExErcise 12.2. Calculate by hand the approximations $x_{1}, x_{2}, x_{3}, x_{4}$ in the Heron process for the square root of 5 with initial value $x_{0}=2$.

Exercise 12.3. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a real sequence. Prove that the sequence converges to x if and only if for all $k \in \mathbb{N}_{+}$a natural number $n_{0} \in \mathbb{N}$ exists, such that for all $n \geq n_{0}$ the estimation $\left|x_{n}-x\right| \leq \frac{1}{k}$ holds.

Exercise 12.4. Examine the convergence of the following sequence

$$
x_{n}=\frac{1}{n^{2}}
$$

where $n \geq 1$.
Exercise 12.5. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be two convergent real sequences with $x_{n} \geq y_{n}$ for all $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} x_{n} \geq \lim _{n \rightarrow \infty} y_{n}$ holds.

Exercise 12.6. Let $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ be three real sequences. Let $x_{n} \leq y_{n} \leq z_{n}$ for all $n \in \mathbb{N}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ be convergent to the same limit a. Prove that also $\left(y_{n}\right)_{n \in \mathbb{N}}$ converges to the same limit a.

ExErcise 12.7. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a convergent sequence of real numbers with limit equal to x. Prove that also the sequence

$$
\left(\left|x_{n}\right|\right)_{n \in \mathbb{N}}
$$

converges, and specifically to $|x|$.
The next two exercises concern the Fibonacci numbers.
The sequence of the Fibonacci numbers f_{n} is defined recursively as

$$
f_{1}:=1, f_{2}:=1 \text { and } f_{n+2}:=f_{n+1}+f_{n} .
$$

Exercise 12.8. Prove by induction the Simpson formula or Simpson identity for the Fibonacci numbers f_{n}. It says ($n \geq 2$)

$$
f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n} .
$$

Exercise 12.9. Prove by induction the Binet formula for the Fibonacci numbers. This says that

$$
f_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

holds ($n \geq 1$).
Exercise 12.10. Examine for each of the following subsets $M \subseteq \mathbb{R}$ the concepts upper bound, lower bound, supremum, infimum, maximum and minimum.
(1) $\{2,-3,-4,5,6,-1,1\}$,
(2) $\left\{\frac{1}{2}, \frac{-3}{7}, \frac{-4}{9}, \frac{5}{9}, \frac{6}{13}, \frac{-1}{3}, \frac{1}{4}\right\}$,
(3)] $-5,2]$,
(4) $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}_{+}\right\}$,
(5) $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}_{+}\right\} \cup\{0\}$,
(6) \mathbb{Q}_{-},
(7) $\left\{x \in \mathbb{Q} \mid x^{2} \leq 2\right\}$,
(8) $\left\{x \in \mathbb{Q} \mid x^{2} \leq 4\right\}$,
(9) $\left\{x^{2} \mid x \in \mathbb{Z}\right\}$.

Hand-in-exercises

Exercise 12.11. (3 points)
Examine the convergence of the following sequence

$$
x_{n}=\frac{1}{\sqrt{n}},
$$

where $n \geq 1$.
Exercise 12.12. (3 points)
Determine the limit of the real sequence given by

$$
x_{n}=\frac{7 n^{3}-3 n^{2}+2 n-11}{13 n^{3}-5 n+4} .
$$

Exercise 12.13. (4 points)
Prove that the real sequence

$$
\left(\frac{n}{2^{n}}\right)_{n \in \mathbb{N}}
$$

converges to 0 .
Exercise 12.14. (6 points)
Examine the convergence of the following real sequence

$$
x_{n}=\frac{\sqrt{n}^{n}}{n!} .
$$

Exercise 12.15. (5 points)
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be sequences of real numbers and let the sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ be defined as $z_{2 n-1}:=x_{n}$ and $z_{2 n}:=y_{n}$. Prove that $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges if and only if $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ converge to the same limit.

Exercise 12.16. (3 points)
Determine the limit of the real sequence given by

$$
x_{n}=\frac{2 n+5 \sqrt{n}+7}{-5 n+3 \sqrt{n}-4} .
$$

